Saedah Dereiah, Muhammad Usman Ghori, Barbara R Conway
{"title":"A Systematic Review of Spironolactone Nano-Formulations for Topical Treatment of Skin Hyperandrogenic Disorders and Chronic Wounds.","authors":"Saedah Dereiah, Muhammad Usman Ghori, Barbara R Conway","doi":"10.3390/pharmaceutics17010027","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs). <b>Methods:</b> A search strategy was developed, and the relevant literature was systematically searched using databases such as Scopus, PubMed, and Google Scholar. The review process, including screening, inclusion, and exclusion criteria, adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. <b>Results:</b> A comprehensive analysis of 13 eligible research articles, corresponding to 15 studies, highlights key aspects such as encapsulation efficiency, stability, particle size, and in vitro and in vivo efficacy. Six studies focused on lipid nanoparticles (LNPs), including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), which were found to improve SP's bioavailability and skin permeation. Another six studies investigated vesicular nanoparticles (VNPs), such as ethosomes and niosomes, demonstrating superior skin targeting and penetration capabilities. Two studies on polymeric nanoparticles (PNPs) showed effectiveness in delivering SP to hair follicles for the treatment of alopecia and acne. Additionally, one study on SP-loaded nanofibers indicated significant potential for topical rosacea therapy. <b>Conclusions:</b> SP-loaded nanocarrier systems represent promising advancements in targeted topical therapy. However, further clinical studies are required to optimize their safety, efficacy, and delivery mechanisms.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17010027","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs). Methods: A search strategy was developed, and the relevant literature was systematically searched using databases such as Scopus, PubMed, and Google Scholar. The review process, including screening, inclusion, and exclusion criteria, adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A comprehensive analysis of 13 eligible research articles, corresponding to 15 studies, highlights key aspects such as encapsulation efficiency, stability, particle size, and in vitro and in vivo efficacy. Six studies focused on lipid nanoparticles (LNPs), including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), which were found to improve SP's bioavailability and skin permeation. Another six studies investigated vesicular nanoparticles (VNPs), such as ethosomes and niosomes, demonstrating superior skin targeting and penetration capabilities. Two studies on polymeric nanoparticles (PNPs) showed effectiveness in delivering SP to hair follicles for the treatment of alopecia and acne. Additionally, one study on SP-loaded nanofibers indicated significant potential for topical rosacea therapy. Conclusions: SP-loaded nanocarrier systems represent promising advancements in targeted topical therapy. However, further clinical studies are required to optimize their safety, efficacy, and delivery mechanisms.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.