An Improved Unscented Kalman Filter Applied to Positioning and Navigation of Autonomous Underwater Vehicles.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-18 DOI:10.3390/s25020551
Jinchao Zhao, Ya Zhang, Shizhong Li, Jiaxuan Wang, Lingling Fang, Luoyin Ning, Jinghao Feng, Jianwu Zhang
{"title":"An Improved Unscented Kalman Filter Applied to Positioning and Navigation of Autonomous Underwater Vehicles.","authors":"Jinchao Zhao, Ya Zhang, Shizhong Li, Jiaxuan Wang, Lingling Fang, Luoyin Ning, Jinghao Feng, Jianwu Zhang","doi":"10.3390/s25020551","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution. An estimation model for system noise, the adaptive Unscented Kalman Filter (UKF) algorithm was derived in light of the maximum likelihood criterion and optimized by applying the rolling-horizon estimation method, using the Newton-Raphson algorithm for the maximum likelihood estimation of noise statistics, and it was verified by simulation experiments using the Lie group inertial navigation error model. The results indicate that, compared with the UKF algorithm and the ARUKF, the improved algorithm reduces attitude angle errors by 45%, speed errors by 44%, and three-dimensional position errors by 47%. It can better cope with complex underwater environments, effectively address the problems of low filtering accuracy and even divergence, and improve the stability of submersibles.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020551","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution. An estimation model for system noise, the adaptive Unscented Kalman Filter (UKF) algorithm was derived in light of the maximum likelihood criterion and optimized by applying the rolling-horizon estimation method, using the Newton-Raphson algorithm for the maximum likelihood estimation of noise statistics, and it was verified by simulation experiments using the Lie group inertial navigation error model. The results indicate that, compared with the UKF algorithm and the ARUKF, the improved algorithm reduces attitude angle errors by 45%, speed errors by 44%, and three-dimensional position errors by 47%. It can better cope with complex underwater environments, effectively address the problems of low filtering accuracy and even divergence, and improve the stability of submersibles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信