A Comprehensive Survey of Deep Learning Approaches in Image Processing.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-17 DOI:10.3390/s25020531
Maria Trigka, Elias Dritsas
{"title":"A Comprehensive Survey of Deep Learning Approaches in Image Processing.","authors":"Maria Trigka, Elias Dritsas","doi":"10.3390/s25020531","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of deep learning (DL) into image processing has driven transformative advancements, enabling capabilities far beyond the reach of traditional methodologies. This survey offers an in-depth exploration of the DL approaches that have redefined image processing, tracing their evolution from early innovations to the latest state-of-the-art developments. It also analyzes the progression of architectural designs and learning paradigms that have significantly enhanced the ability to process and interpret complex visual data. Key advancements, such as techniques improving model efficiency, generalization, and robustness, are examined, showcasing DL's ability to address increasingly sophisticated image-processing tasks across diverse domains. Metrics used for rigorous model evaluation are also discussed, underscoring the importance of performance assessment in varied application contexts. The impact of DL in image processing is highlighted through its ability to tackle complex challenges and generate actionable insights. Finally, this survey identifies potential future directions, including the integration of emerging technologies like quantum computing and neuromorphic architectures for enhanced efficiency and federated learning for privacy-preserving training. Additionally, it highlights the potential of combining DL with emerging technologies such as edge computing and explainable artificial intelligence (AI) to address scalability and interpretability challenges. These advancements are positioned to further extend the capabilities and applications of DL, driving innovation in image processing.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020531","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of deep learning (DL) into image processing has driven transformative advancements, enabling capabilities far beyond the reach of traditional methodologies. This survey offers an in-depth exploration of the DL approaches that have redefined image processing, tracing their evolution from early innovations to the latest state-of-the-art developments. It also analyzes the progression of architectural designs and learning paradigms that have significantly enhanced the ability to process and interpret complex visual data. Key advancements, such as techniques improving model efficiency, generalization, and robustness, are examined, showcasing DL's ability to address increasingly sophisticated image-processing tasks across diverse domains. Metrics used for rigorous model evaluation are also discussed, underscoring the importance of performance assessment in varied application contexts. The impact of DL in image processing is highlighted through its ability to tackle complex challenges and generate actionable insights. Finally, this survey identifies potential future directions, including the integration of emerging technologies like quantum computing and neuromorphic architectures for enhanced efficiency and federated learning for privacy-preserving training. Additionally, it highlights the potential of combining DL with emerging technologies such as edge computing and explainable artificial intelligence (AI) to address scalability and interpretability challenges. These advancements are positioned to further extend the capabilities and applications of DL, driving innovation in image processing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信