Jagoda Adamczyk-Grochala, Maciej Wnuk, Bernadetta Oklejewicz, Katarzyna Klimczak, Dominika Błoniarz, Anna Deręgowska, Iwona Rzeszutek, Paulina Stec, Agnieszka Ciuraszkiewicz, Mariola Kądziołka-Gaweł, Dariusz Łukowiec, Piotr Piotrowski, Grzegorz Litwinienko, Adrian Radoń, Anna Lewińska
{"title":"Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines.","authors":"Jagoda Adamczyk-Grochala, Maciej Wnuk, Bernadetta Oklejewicz, Katarzyna Klimczak, Dominika Błoniarz, Anna Deręgowska, Iwona Rzeszutek, Paulina Stec, Agnieszka Ciuraszkiewicz, Mariola Kądziołka-Gaweł, Dariusz Łukowiec, Piotr Piotrowski, Grzegorz Litwinienko, Adrian Radoń, Anna Lewińska","doi":"10.1080/17435390.2025.2450196","DOIUrl":null,"url":null,"abstract":"<p><p>Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@Fe<sub>3</sub>O<sub>4</sub> NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@Fe<sub>3</sub>O<sub>4</sub> NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines. URO@Fe<sub>3</sub>O<sub>4</sub> NPs promoted oxidative stress and FOXO3a-based antioxidant response in breast cancer cells. Elevated levels of GPX4 and decreased levels of ACSL4 in URO@Fe<sub>3</sub>O<sub>4</sub> NP-treated breast cancer cells protected against ferroptotic cell death. On the contrary, URO@Fe<sub>3</sub>O<sub>4</sub> NPs impaired the activity of PERK, a part of unfolded protein response (UPR), especially when the glucose supply was limited, that was accompanied by genetic instability, and apoptotic and/or necrotic cell death in breast cancer cells. In conclusion, this is the first comprehensive analysis of anticancer effects of URO@Fe<sub>3</sub>O<sub>4</sub> NPs against a panel of forty breast cancer cell lines with different receptor status and in glucose replete and deplete conditions. We suggest that presented results might be helpful for designing new nano-based anti-breast cancer strategies.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-19"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2025.2450196","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@Fe3O4 NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@Fe3O4 NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines. URO@Fe3O4 NPs promoted oxidative stress and FOXO3a-based antioxidant response in breast cancer cells. Elevated levels of GPX4 and decreased levels of ACSL4 in URO@Fe3O4 NP-treated breast cancer cells protected against ferroptotic cell death. On the contrary, URO@Fe3O4 NPs impaired the activity of PERK, a part of unfolded protein response (UPR), especially when the glucose supply was limited, that was accompanied by genetic instability, and apoptotic and/or necrotic cell death in breast cancer cells. In conclusion, this is the first comprehensive analysis of anticancer effects of URO@Fe3O4 NPs against a panel of forty breast cancer cell lines with different receptor status and in glucose replete and deplete conditions. We suggest that presented results might be helpful for designing new nano-based anti-breast cancer strategies.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.