Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Armstrong Ighodalo Omoregie, Fock-Kui Kan, Hazlami Fikri Basri, Muhammad Oliver Ensor Silini, Adharsh Rajasekar
{"title":"Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.","authors":"Armstrong Ighodalo Omoregie, Fock-Kui Kan, Hazlami Fikri Basri, Muhammad Oliver Ensor Silini, Adharsh Rajasekar","doi":"10.3390/microorganisms13010174","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization. The process facilitated the removal of Cd<sup>2+</sup> (99.10%) and Ni<sup>2+</sup> (78.33%) while producing stable calcite crystals that enhanced soil strength. Thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)) confirmed the successful production of CaCO<sub>3</sub> and its role in improving soil stability. DSC analysis revealed endothermic and exothermic peaks, including a significant exothermic peak at 444 °C, corresponding to the thermal decomposition of CaCO<sub>3</sub> into CO<sub>2</sub> and CaO, confirming calcite formation. TGA results showed steady weight loss, consistent with the breakdown of CaCO<sub>3</sub>, supporting the formation of stable carbonates. The MICP treatment significantly increased soil strength, with the highest surface strength observed at 440 psi, correlating with the highest CaCO<sub>3</sub> content (18.83%). These findings underscore the effectiveness of MICP in soil stabilization, pollutant removal, and improving geotechnical properties.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010174","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization. The process facilitated the removal of Cd2+ (99.10%) and Ni2+ (78.33%) while producing stable calcite crystals that enhanced soil strength. Thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)) confirmed the successful production of CaCO3 and its role in improving soil stability. DSC analysis revealed endothermic and exothermic peaks, including a significant exothermic peak at 444 °C, corresponding to the thermal decomposition of CaCO3 into CO2 and CaO, confirming calcite formation. TGA results showed steady weight loss, consistent with the breakdown of CaCO3, supporting the formation of stable carbonates. The MICP treatment significantly increased soil strength, with the highest surface strength observed at 440 psi, correlating with the highest CaCO3 content (18.83%). These findings underscore the effectiveness of MICP in soil stabilization, pollutant removal, and improving geotechnical properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信