A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-14 DOI:10.3390/mi16010091
Matthias Weiss, Peng Zhang, Michael Pereira
{"title":"A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production.","authors":"Matthias Weiss, Peng Zhang, Michael Pereira","doi":"10.3390/mi16010091","DOIUrl":null,"url":null,"abstract":"<p><p>The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio (<i>AR</i>) between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation. In micro-roll forming the major deformation mode is bending, and this enables production of channels with higher <i>ARs</i> than is currently possible. However, micro-roll forming uses multiple sets of forming roll stands to form the part and this leads to technological challenges related to tool alignment and roll tool precision that must be overcome before widespread application can be achieved. This study presents a new methodology to achieve tight tool tolerances when producing micro-roll tooling by utilizing wire-EDM and micro-turning techniques. This is combined with a new micro-roll former design that enables high-precision tool alignment across multiple roll stations. Proof of concept is provided through micro-roll forming trials performed on ultra-thin titanium sheets that show that the proposed technology can achieve tight dimensional tolerances in the sub-millimeter scale that suits bipolar plate applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio (AR) between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation. In micro-roll forming the major deformation mode is bending, and this enables production of channels with higher ARs than is currently possible. However, micro-roll forming uses multiple sets of forming roll stands to form the part and this leads to technological challenges related to tool alignment and roll tool precision that must be overcome before widespread application can be achieved. This study presents a new methodology to achieve tight tool tolerances when producing micro-roll tooling by utilizing wire-EDM and micro-turning techniques. This is combined with a new micro-roll former design that enables high-precision tool alignment across multiple roll stations. Proof of concept is provided through micro-roll forming trials performed on ultra-thin titanium sheets that show that the proposed technology can achieve tight dimensional tolerances in the sub-millimeter scale that suits bipolar plate applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信