Substrate Integrated Waveguide on Glass with Vacuum-Filled Tin Through Glass Vias for Millimeter-Wave Applications.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-12-26 DOI:10.3390/mi16010012
Seung-Han Chung, Ho-Sun Yeom, Che-Heung Kim, Yong-Kweon Kim, Seung-Ki Lee, Chang-Wook Baek, Jae-Hyoung Park
{"title":"Substrate Integrated Waveguide on Glass with Vacuum-Filled Tin Through Glass Vias for Millimeter-Wave Applications.","authors":"Seung-Han Chung, Ho-Sun Yeom, Che-Heung Kim, Yong-Kweon Kim, Seung-Ki Lee, Chang-Wook Baek, Jae-Hyoung Park","doi":"10.3390/mi16010012","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel approach to fabricate substrate integrated waveguides (SIWs) on glass substrates with tin (Sn) through glass vias (TGVs) tailored for millimeter-wave applications. The fabrication process employs a custom-designed vacuum suctioning system to rapidly fill precise TGV holes in the glass substrate, which are formed by wafer-level glass reflow micromachining techniques with molten tin in a minute. This method offers a very fast and cost-effective alternative for complete via filling without voids compared to the conventional metallization techniques such as electroplating or sputtering. An SIW with a 3-dB cutoff frequency of 17.2 GHz was fabricated using the proposed process. The fabricated SIW shows an average insertion loss of 1.65 ± 0.54 dB across the 20-35 GHz range. These results highlight the potential of glass substrates with tin TGVs for fabricating millimeter-wave devices.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010012","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to fabricate substrate integrated waveguides (SIWs) on glass substrates with tin (Sn) through glass vias (TGVs) tailored for millimeter-wave applications. The fabrication process employs a custom-designed vacuum suctioning system to rapidly fill precise TGV holes in the glass substrate, which are formed by wafer-level glass reflow micromachining techniques with molten tin in a minute. This method offers a very fast and cost-effective alternative for complete via filling without voids compared to the conventional metallization techniques such as electroplating or sputtering. An SIW with a 3-dB cutoff frequency of 17.2 GHz was fabricated using the proposed process. The fabricated SIW shows an average insertion loss of 1.65 ± 0.54 dB across the 20-35 GHz range. These results highlight the potential of glass substrates with tin TGVs for fabricating millimeter-wave devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信