Biodegradation of Phenol at High Initial Concentration by Rhodococcus opacus 3D Strain: Biochemical and Genetic Aspects.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Tatiana O Anokhina, Tatiana Z Esikova, Valentina N Polivtseva, Nataliya E Suzina, Inna P Solyanikova
{"title":"Biodegradation of Phenol at High Initial Concentration by <i>Rhodococcus opacus</i> 3D Strain: Biochemical and Genetic Aspects.","authors":"Tatiana O Anokhina, Tatiana Z Esikova, Valentina N Polivtseva, Nataliya E Suzina, Inna P Solyanikova","doi":"10.3390/microorganisms13010205","DOIUrl":null,"url":null,"abstract":"<p><p>Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant. One of the cheapest and most effective ways to combat phenol pollution is biological purification. However, the inability of bacteria to decompose high concentrations of phenol is a significant limitation. Due to the uncoupling of oxidative phosphorylation, phenol concentrations above 1 g/L are toxic and inhibit cell growth. This article presents data on the biodegradative potential of <i>Rhodococcus opacus</i> strain 3D. This strain is capable of decomposing a wide range of toxicants, including phenol. In the present study, cell growth with phenol, growth after rest, growth of immobilized cells before and after rest, phase contrast, and scanning microscopy of immobilized cells on fiber were studied in detail. The free-living and immobilized cells can decompose phenol concentrations up to 1.5 g/L and 2.5 g/L, respectively. The decomposition of the toxicant was catalyzed by the enzymes catechol 1,2-dioxygenase and <i>cis</i>,<i>cis</i>-muconate cycloisomerase. The role of protocatechuate 3,4-dioxygenase in biodegradative processes is discussed. In this work, it is shown that the immobilized cells can be stored for a long time (up to 2 years) without significant loss of their degradation activity. An assessment of the induction of genes potentially involved in this process was taken. Based on our investigation, we can conclude that this strain can be considered an effective destructor that is capable of degrading phenol at high concentrations, increases its biodegradative potential during immobilization, and retains this ability for a long storage time. Therefore, the strain can be used in biotechnology for the purification of aqueous samples at high concentrations from phenolic contamination.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010205","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant. One of the cheapest and most effective ways to combat phenol pollution is biological purification. However, the inability of bacteria to decompose high concentrations of phenol is a significant limitation. Due to the uncoupling of oxidative phosphorylation, phenol concentrations above 1 g/L are toxic and inhibit cell growth. This article presents data on the biodegradative potential of Rhodococcus opacus strain 3D. This strain is capable of decomposing a wide range of toxicants, including phenol. In the present study, cell growth with phenol, growth after rest, growth of immobilized cells before and after rest, phase contrast, and scanning microscopy of immobilized cells on fiber were studied in detail. The free-living and immobilized cells can decompose phenol concentrations up to 1.5 g/L and 2.5 g/L, respectively. The decomposition of the toxicant was catalyzed by the enzymes catechol 1,2-dioxygenase and cis,cis-muconate cycloisomerase. The role of protocatechuate 3,4-dioxygenase in biodegradative processes is discussed. In this work, it is shown that the immobilized cells can be stored for a long time (up to 2 years) without significant loss of their degradation activity. An assessment of the induction of genes potentially involved in this process was taken. Based on our investigation, we can conclude that this strain can be considered an effective destructor that is capable of degrading phenol at high concentrations, increases its biodegradative potential during immobilization, and retains this ability for a long storage time. Therefore, the strain can be used in biotechnology for the purification of aqueous samples at high concentrations from phenolic contamination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信