Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.

IF 6.1 1区 生物学 Q1 MICROBIOLOGY
Yanan Qu, Xuechen Yang, Minghao Zhang, Junda Chen, Yushu Sui, Xiaochong Zhang, Yizhu Zeng, Muping Huang, Yifan Gao, Raúl Ochoa-Hueso, Baoku Shi, Daiqi Zhao, Tianxue Yang, Wei Sun
{"title":"Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland.","authors":"Yanan Qu, Xuechen Yang, Minghao Zhang, Junda Chen, Yushu Sui, Xiaochong Zhang, Yizhu Zeng, Muping Huang, Yifan Gao, Raúl Ochoa-Hueso, Baoku Shi, Daiqi Zhao, Tianxue Yang, Wei Sun","doi":"10.1016/j.micres.2025.128075","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions. We also evaluated the impact of drought on ecosystem individual functions (e.g., plant biomass and microbial activity), and on multifunctionality (EMF). Finally, we linked the drought-induced changes in microbial communities with the variations in EMF. Drought significantly increased fungal diversity and intensified species interactions, but it decreased bacterial diversity and species interactions. Both plant and microbial biomass significantly decreased with increasing drought severity, while microbial activity showed the opposite trend. Only the -50 % rainfall treatment notably reduced EMF. Bacterial diversity and species interactions positively correlated with most ecosystem functions. However, fungal parameters were negatively associated with these functions. Structural equation modeling indicated that bacterial diversity had a strong direct positive effect on EMF (standardized path coefficient: 0.52), and that bacterial diversity was indirectly suppressed by drought through decreasing soil water content and bacterial phospholipid fatty acids (PLFAs). In contrast, fungal species interactions had a significant direct negative effect on EMF with the highest standardized path coefficient (-0.6) and were directly enhanced by fungal diversity. Drought had indirect positive effects on fungal diversity by decreasing soil water content and stimulating fungal PLFAs. Our results highlight the importance of considering soil microbial species interactions when evaluating the ecological impacts of drought. Furthermore, the divergent regulatory pathways of bacterial and fungal communities to EMF suggest that improving ecosystem functionality may be achieved by enhancing bacterial diversity while mitigating fungal species interactions through reducing fungal diversity.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128075"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2025.128075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions. We also evaluated the impact of drought on ecosystem individual functions (e.g., plant biomass and microbial activity), and on multifunctionality (EMF). Finally, we linked the drought-induced changes in microbial communities with the variations in EMF. Drought significantly increased fungal diversity and intensified species interactions, but it decreased bacterial diversity and species interactions. Both plant and microbial biomass significantly decreased with increasing drought severity, while microbial activity showed the opposite trend. Only the -50 % rainfall treatment notably reduced EMF. Bacterial diversity and species interactions positively correlated with most ecosystem functions. However, fungal parameters were negatively associated with these functions. Structural equation modeling indicated that bacterial diversity had a strong direct positive effect on EMF (standardized path coefficient: 0.52), and that bacterial diversity was indirectly suppressed by drought through decreasing soil water content and bacterial phospholipid fatty acids (PLFAs). In contrast, fungal species interactions had a significant direct negative effect on EMF with the highest standardized path coefficient (-0.6) and were directly enhanced by fungal diversity. Drought had indirect positive effects on fungal diversity by decreasing soil water content and stimulating fungal PLFAs. Our results highlight the importance of considering soil microbial species interactions when evaluating the ecological impacts of drought. Furthermore, the divergent regulatory pathways of bacterial and fungal communities to EMF suggest that improving ecosystem functionality may be achieved by enhancing bacterial diversity while mitigating fungal species interactions through reducing fungal diversity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信