Photodynamic Therapy with Protoporphyrin IX Precursors Using Artificial Daylight Improves Skin Antisepsis for Orthopedic Surgeries.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Tiziano A Schweizer, Julia S Würmli, Julia Prinz, Maximilian Wölfle, Roger Marti, Hendrik Koliwer-Brandl, Ashley M Rooney, Vanni Benvenga, Adrian Egli, Laurence Imhof, Philipp P Bosshard, Yvonne Achermann
{"title":"Photodynamic Therapy with Protoporphyrin IX Precursors Using Artificial Daylight Improves Skin Antisepsis for Orthopedic Surgeries.","authors":"Tiziano A Schweizer, Julia S Würmli, Julia Prinz, Maximilian Wölfle, Roger Marti, Hendrik Koliwer-Brandl, Ashley M Rooney, Vanni Benvenga, Adrian Egli, Laurence Imhof, Philipp P Bosshard, Yvonne Achermann","doi":"10.3390/microorganisms13010204","DOIUrl":null,"url":null,"abstract":"<p><p>Classical preoperative skin antisepsis is insufficient in completely eliminating bacterial skin colonization for arthroplasty. In contrast, photodynamic therapy (PDT) with red light and methyl-aminolevulinate (MAL), combined with skin antisepsis, led to the absence of bacterial growth in healthy participants, though with local skin erythema, posing an obstacle for orthopedic surgery. Therefore, we explored whether artificial daylight PDT (PDT-DL) was superior to red light. Twenty healthy participants were allocated to either 5-aminolevulinic acid-(5-ALA) PDT-DL (n = 10) or MAL-PDT-DL (n = 10) before antisepsis with povidone-iodine/alcohol. Skin swabs from the groin were taken to cultivate bacteria at baseline, after PDT-DL, and after the subsequent antisepsis. Additional swabs were taken on day 4 before and after antisepsis without PDT. The contralateral groin of each participant and of ten additional healthy volunteers served as the control (n = 30). In selected participants, 16S rRNA-based amplicon deep sequencing was performed. All participants showed a baseline bacterial colonization. After a PDT-DL with skin antisepsis, bacterial growth occurred in three (30%) and in one (10%) participants with 5-ALA and MAL, respectively, compared to the sixteen (55%) participants in the control group. On day 4, three (30%) participants per group showed positive cultures post antisepsis. Adverse effects were reported in six (60%) and zero (0%) participants for 5-ALA- and MAL-PDT-DL, respectively. The skin bacteriome changes correlated with the bacterial culture results. The MAL-PDT-DL with skin antisepsis significantly increased bacterial reduction on the skin without adverse effects. This offers an opportunity to prevent infections in arthroplasty patients and reduce antibiotic use, thus contributing to antibiotic stewardship goals emphasized in the One Health approach.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010204","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Classical preoperative skin antisepsis is insufficient in completely eliminating bacterial skin colonization for arthroplasty. In contrast, photodynamic therapy (PDT) with red light and methyl-aminolevulinate (MAL), combined with skin antisepsis, led to the absence of bacterial growth in healthy participants, though with local skin erythema, posing an obstacle for orthopedic surgery. Therefore, we explored whether artificial daylight PDT (PDT-DL) was superior to red light. Twenty healthy participants were allocated to either 5-aminolevulinic acid-(5-ALA) PDT-DL (n = 10) or MAL-PDT-DL (n = 10) before antisepsis with povidone-iodine/alcohol. Skin swabs from the groin were taken to cultivate bacteria at baseline, after PDT-DL, and after the subsequent antisepsis. Additional swabs were taken on day 4 before and after antisepsis without PDT. The contralateral groin of each participant and of ten additional healthy volunteers served as the control (n = 30). In selected participants, 16S rRNA-based amplicon deep sequencing was performed. All participants showed a baseline bacterial colonization. After a PDT-DL with skin antisepsis, bacterial growth occurred in three (30%) and in one (10%) participants with 5-ALA and MAL, respectively, compared to the sixteen (55%) participants in the control group. On day 4, three (30%) participants per group showed positive cultures post antisepsis. Adverse effects were reported in six (60%) and zero (0%) participants for 5-ALA- and MAL-PDT-DL, respectively. The skin bacteriome changes correlated with the bacterial culture results. The MAL-PDT-DL with skin antisepsis significantly increased bacterial reduction on the skin without adverse effects. This offers an opportunity to prevent infections in arthroplasty patients and reduce antibiotic use, thus contributing to antibiotic stewardship goals emphasized in the One Health approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信