Additive Manufacturing of Smart Footwear Components for Healthcare Applications.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-12-28 DOI:10.3390/mi16010030
Aravind Kanna Kundumani Janarthanan, Bala Vaidhyanathan
{"title":"Additive Manufacturing of Smart Footwear Components for Healthcare Applications.","authors":"Aravind Kanna Kundumani Janarthanan, Bala Vaidhyanathan","doi":"10.3390/mi16010030","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic foot complications pose significant health risks, necessitating innovative approaches in orthotic design. This study explores the potential of additive manufacturing in producing functional footwear components with lattice-based structures for diabetic foot orthoses. Five distinct lattice structures (gyroid, diamond, Schwarz P, Split P, and honeycomb) were designed and fabricated using stereolithography (SLA) with varying strand thicknesses and resin types. Mechanical testing revealed that the Schwarz P lattice exhibited superior compressive strength, particularly when fabricated with flexible resin. Porosity analysis demonstrated significant variations across structures, with the gyroid showing the most pronounced changes with increasing mesh thickness. Real-time pressure distribution mapping, achieved through integrated force-sensitive resistors and Arduino-based data acquisition, enabled the visualization of pressure hotspots across the insole. The correlation between lattice properties and pressure distribution was established, allowing for tailored designs that effectively alleviated high-pressure areas. This study demonstrates the feasibility of creating highly personalized orthotic solutions for diabetic patients using additive manufacturing, offering a promising approach to reducing the plantar pressure in foot and may contribute to improved outcomes in diabetic foot care.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic foot complications pose significant health risks, necessitating innovative approaches in orthotic design. This study explores the potential of additive manufacturing in producing functional footwear components with lattice-based structures for diabetic foot orthoses. Five distinct lattice structures (gyroid, diamond, Schwarz P, Split P, and honeycomb) were designed and fabricated using stereolithography (SLA) with varying strand thicknesses and resin types. Mechanical testing revealed that the Schwarz P lattice exhibited superior compressive strength, particularly when fabricated with flexible resin. Porosity analysis demonstrated significant variations across structures, with the gyroid showing the most pronounced changes with increasing mesh thickness. Real-time pressure distribution mapping, achieved through integrated force-sensitive resistors and Arduino-based data acquisition, enabled the visualization of pressure hotspots across the insole. The correlation between lattice properties and pressure distribution was established, allowing for tailored designs that effectively alleviated high-pressure areas. This study demonstrates the feasibility of creating highly personalized orthotic solutions for diabetic patients using additive manufacturing, offering a promising approach to reducing the plantar pressure in foot and may contribute to improved outcomes in diabetic foot care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信