Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-07 DOI:10.3390/mi16010066
Rong Chen, Shanshan He, Xiansong He, Jin Xie, Xicong Zhu
{"title":"Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting.","authors":"Rong Chen, Shanshan He, Xiansong He, Jin Xie, Xicong Zhu","doi":"10.3390/mi16010066","DOIUrl":null,"url":null,"abstract":"<p><p>In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut. First, the micropillar array and the spiral microchannel were designed to disperse and sort the particles in microchips, respectively; then, a scanning path with a scanning interval of 5 μm was designed according to the spot diameter in picosecond laser etching; next, the effects of laser power, scanning speed and accumulation times were experimentally investigated regarding the morphology of spiral microchannels; finally, the microfluidic flowing test with 5 μm and 10 μm microparticles was performed to analyze the dispersing and sorting performance. It was shown that reducing the laser power and accumulation times alongside increasing the scanning speed effectively reduced the channel depth and surface roughness. The channel surface roughness reached about 500 nm or less when the laser power was 9 W, the scanning speed was 1000 mm/s, and the cumulative number was 4. The etched micropillar array, with a width of 89 μm and an interval of 97 μm, was able to disperse the different microparticles into the spiral microchannel. Moreover, the spiral-structured channel, with an aspect ratio of 0.51, significantly influenced the velocity gradient distribution, particle focusing, and stratification. At flow rates of 300-600 μL/min, the microparticles produced stable focusing bands. Through the etched microchip, mixed 5 μm and 10 μm microparticles were sorted by stable laminar flow at flow rates of 400-500 μL/min. These findings contribute to the design and processing of high-performance glass microfluidic chips for dispersion and sorting.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010066","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut. First, the micropillar array and the spiral microchannel were designed to disperse and sort the particles in microchips, respectively; then, a scanning path with a scanning interval of 5 μm was designed according to the spot diameter in picosecond laser etching; next, the effects of laser power, scanning speed and accumulation times were experimentally investigated regarding the morphology of spiral microchannels; finally, the microfluidic flowing test with 5 μm and 10 μm microparticles was performed to analyze the dispersing and sorting performance. It was shown that reducing the laser power and accumulation times alongside increasing the scanning speed effectively reduced the channel depth and surface roughness. The channel surface roughness reached about 500 nm or less when the laser power was 9 W, the scanning speed was 1000 mm/s, and the cumulative number was 4. The etched micropillar array, with a width of 89 μm and an interval of 97 μm, was able to disperse the different microparticles into the spiral microchannel. Moreover, the spiral-structured channel, with an aspect ratio of 0.51, significantly influenced the velocity gradient distribution, particle focusing, and stratification. At flow rates of 300-600 μL/min, the microparticles produced stable focusing bands. Through the etched microchip, mixed 5 μm and 10 μm microparticles were sorted by stable laminar flow at flow rates of 400-500 μL/min. These findings contribute to the design and processing of high-performance glass microfluidic chips for dispersion and sorting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信