Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem
{"title":"Performance Assessment of Ultrascaled Vacuum Gate Dielectric MoS<sub>2</sub> Field-Effect Transistors: Avoiding Oxide Instabilities in Radiation Environments.","authors":"Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem","doi":"10.3390/mi16010033","DOIUrl":null,"url":null,"abstract":"<p><p>Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime. The performance evaluation includes analysis of the transfer characteristics, subthreshold swing, on-state and off-state currents, current ratio, and scaling limits. Simulation results demonstrate that the investigated VGD TMD FET, featuring a gate-all-around (GAA) configuration, a TMD-based channel, and a thin vacuum gate dielectric, collectively compensates for the low dielectric constant of the VGD, enabling exceptional electrostatic control. This combination ensures superior switching performance in the ultrascaled regime, achieving a high current ratio and steep subthreshold characteristics. These findings position the GAA-VGD TMD FET as a promising candidate for advanced radiation-hardened nanoelectronics.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime. The performance evaluation includes analysis of the transfer characteristics, subthreshold swing, on-state and off-state currents, current ratio, and scaling limits. Simulation results demonstrate that the investigated VGD TMD FET, featuring a gate-all-around (GAA) configuration, a TMD-based channel, and a thin vacuum gate dielectric, collectively compensates for the low dielectric constant of the VGD, enabling exceptional electrostatic control. This combination ensures superior switching performance in the ultrascaled regime, achieving a high current ratio and steep subthreshold characteristics. These findings position the GAA-VGD TMD FET as a promising candidate for advanced radiation-hardened nanoelectronics.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.