Performance Assessment of Ultrascaled Vacuum Gate Dielectric MoS2 Field-Effect Transistors: Avoiding Oxide Instabilities in Radiation Environments.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-12-28 DOI:10.3390/mi16010033
Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem
{"title":"Performance Assessment of Ultrascaled Vacuum Gate Dielectric MoS<sub>2</sub> Field-Effect Transistors: Avoiding Oxide Instabilities in Radiation Environments.","authors":"Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem","doi":"10.3390/mi16010033","DOIUrl":null,"url":null,"abstract":"<p><p>Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime. The performance evaluation includes analysis of the transfer characteristics, subthreshold swing, on-state and off-state currents, current ratio, and scaling limits. Simulation results demonstrate that the investigated VGD TMD FET, featuring a gate-all-around (GAA) configuration, a TMD-based channel, and a thin vacuum gate dielectric, collectively compensates for the low dielectric constant of the VGD, enabling exceptional electrostatic control. This combination ensures superior switching performance in the ultrascaled regime, achieving a high current ratio and steep subthreshold characteristics. These findings position the GAA-VGD TMD FET as a promising candidate for advanced radiation-hardened nanoelectronics.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime. The performance evaluation includes analysis of the transfer characteristics, subthreshold swing, on-state and off-state currents, current ratio, and scaling limits. Simulation results demonstrate that the investigated VGD TMD FET, featuring a gate-all-around (GAA) configuration, a TMD-based channel, and a thin vacuum gate dielectric, collectively compensates for the low dielectric constant of the VGD, enabling exceptional electrostatic control. This combination ensures superior switching performance in the ultrascaled regime, achieving a high current ratio and steep subthreshold characteristics. These findings position the GAA-VGD TMD FET as a promising candidate for advanced radiation-hardened nanoelectronics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信