Bo Chen, Jiyue Yang, Haoyu Tang, Yahang Wu, Haoran Zhang
{"title":"Optimization of Flexible Rotor for Ultrasonic Motor Based on Response Surface and Genetic Algorithm.","authors":"Bo Chen, Jiyue Yang, Haoyu Tang, Yahang Wu, Haoran Zhang","doi":"10.3390/mi16010054","DOIUrl":null,"url":null,"abstract":"<p><p>The flexible rotor, as a crucial component of the traveling wave rotary ultrasonic motor, effectively reduces radial friction. However, issues such as uneven contact between the stator and rotor, as well as rotor-deformation-induced stress, still persist. This paper presents an optimization method that combines the Kriging response surface model with a multi-objective genetic algorithm (MOGA). Drawing on the existing rotor structure, a novel rotor design is proposed to match the improved TRUM60 stator. During the optimization process, the contact surface between the stator and rotor is taken as the optimization target, and an objective function is established. The Kriging response surface model is constructed using Latin hypercube sampling, and an MOGA is employed to optimize this model, allowing the selection of the optimal balanced solution from multiple candidate designs. Following stator optimization, the objective function value decreased from 0.631 to 0.036, and the maximum contact stress on the rotor inner ring was reduced from 32.77 MPa to 9.96 MPa. Experimental validation confirmed the reliability of this design, significantly improving the overall performance and durability of the motor.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The flexible rotor, as a crucial component of the traveling wave rotary ultrasonic motor, effectively reduces radial friction. However, issues such as uneven contact between the stator and rotor, as well as rotor-deformation-induced stress, still persist. This paper presents an optimization method that combines the Kriging response surface model with a multi-objective genetic algorithm (MOGA). Drawing on the existing rotor structure, a novel rotor design is proposed to match the improved TRUM60 stator. During the optimization process, the contact surface between the stator and rotor is taken as the optimization target, and an objective function is established. The Kriging response surface model is constructed using Latin hypercube sampling, and an MOGA is employed to optimize this model, allowing the selection of the optimal balanced solution from multiple candidate designs. Following stator optimization, the objective function value decreased from 0.631 to 0.036, and the maximum contact stress on the rotor inner ring was reduced from 32.77 MPa to 9.96 MPa. Experimental validation confirmed the reliability of this design, significantly improving the overall performance and durability of the motor.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.