Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Xiaojie Yue, Lei Zhu, Zhigang Zhang
{"title":"Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.","authors":"Xiaojie Yue, Lei Zhu, Zhigang Zhang","doi":"10.3390/microorganisms13010165","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil<sup>®</sup> on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data. The Lacidofil<sup>®</sup> altogether altered 2941 differential splicing events, predominantly, skipped exon (SE) and mutually exclusive exon (MXE) events. Protein-protein interactions and a KEGG analysis of differentially spliced genes (DSGs) revealed consistent enrichment in the spliceosome and vesicle transport complexes, as well as in pathways related to neurodegenerative diseases, synaptic function and plasticity, and substance addiction across brain regions. Using the PsyGeNET platform, we found that DSGs from the locus coeruleus (LConly), medial preoptic area (mPOA), and ventral dentate gyrus (venDG) were enriched in depression-associated or schizophrenia-associated genes. Notably, we highlight the <i>App</i> gene, where Lacidofil<sup>®</sup> precisely regulated the splicing of two exons causally involved in amyloid β protein-based neurodegenerative diseases. Although the splicing factors exhibited both splicing plasticity and expression plasticity in response to Lacidofil<sup>®</sup>, the overlap between DSGs and differentially expressed genes (DEGs) in most brain regions was rather low. Our study provides novel mechanistic insight into how gut probiotics might influence brain function through the modulation of RNA splicing.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010165","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil® on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data. The Lacidofil® altogether altered 2941 differential splicing events, predominantly, skipped exon (SE) and mutually exclusive exon (MXE) events. Protein-protein interactions and a KEGG analysis of differentially spliced genes (DSGs) revealed consistent enrichment in the spliceosome and vesicle transport complexes, as well as in pathways related to neurodegenerative diseases, synaptic function and plasticity, and substance addiction across brain regions. Using the PsyGeNET platform, we found that DSGs from the locus coeruleus (LConly), medial preoptic area (mPOA), and ventral dentate gyrus (venDG) were enriched in depression-associated or schizophrenia-associated genes. Notably, we highlight the App gene, where Lacidofil® precisely regulated the splicing of two exons causally involved in amyloid β protein-based neurodegenerative diseases. Although the splicing factors exhibited both splicing plasticity and expression plasticity in response to Lacidofil®, the overlap between DSGs and differentially expressed genes (DEGs) in most brain regions was rather low. Our study provides novel mechanistic insight into how gut probiotics might influence brain function through the modulation of RNA splicing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信