Experimental Investigation on Macroscopic and Microscopic Mechanical Properties of Geopolymer-Stabilized Macadam.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-01-20 DOI:10.3390/ma18020454
Hancheng Dan, Shenglong Ma, Mengjin Li, Jiawei Tan, Haoran Zhang
{"title":"Experimental Investigation on Macroscopic and Microscopic Mechanical Properties of Geopolymer-Stabilized Macadam.","authors":"Hancheng Dan, Shenglong Ma, Mengjin Li, Jiawei Tan, Haoran Zhang","doi":"10.3390/ma18020454","DOIUrl":null,"url":null,"abstract":"<p><p>Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM). Performance improvements were particularly notable with higher binder-to-aggregate ratios. GSM derived from a high-Ca precursor achieved a relatively higher fatigue life and resistance to permanent deformation under cyclic loading, outperforming CSM. Furthermore, relationship models developed from the indirect tensile fatigue test results provide a valuable framework for evaluating GSM's long-term road performance. Microstructural analyses revealed that geopolymer features a reticulated gel structure and a denser, more continuous internal matrix, which contribute to its superior properties. The interface products of GSM, including C-A-S-H gel and C(N)-A-S-H gel, enhance mechanical interlocking and promote early strength development, accounting for its exceptional mechanical strength and fatigue resistance. These findings offer valuable insights and technical guidance for employing geopolymer as a sustainable and effective alternative to cement-stabilized macadam in base layer construction.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18020454","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM). Performance improvements were particularly notable with higher binder-to-aggregate ratios. GSM derived from a high-Ca precursor achieved a relatively higher fatigue life and resistance to permanent deformation under cyclic loading, outperforming CSM. Furthermore, relationship models developed from the indirect tensile fatigue test results provide a valuable framework for evaluating GSM's long-term road performance. Microstructural analyses revealed that geopolymer features a reticulated gel structure and a denser, more continuous internal matrix, which contribute to its superior properties. The interface products of GSM, including C-A-S-H gel and C(N)-A-S-H gel, enhance mechanical interlocking and promote early strength development, accounting for its exceptional mechanical strength and fatigue resistance. These findings offer valuable insights and technical guidance for employing geopolymer as a sustainable and effective alternative to cement-stabilized macadam in base layer construction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信