Magnetic Field-Assisted Orientation and Positioning of Magnetite for Flexible and Electrically Conductive Sensors.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-08 DOI:10.3390/mi16010068
David Seixas Esteves, Amanda Melo, Sónia Alves, Nelson Durães, Maria C Paiva, Elsa W Sequeiros
{"title":"Magnetic Field-Assisted Orientation and Positioning of Magnetite for Flexible and Electrically Conductive Sensors.","authors":"David Seixas Esteves, Amanda Melo, Sónia Alves, Nelson Durães, Maria C Paiva, Elsa W Sequeiros","doi":"10.3390/mi16010068","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic field-assisted control of magnetite location is a promising strategy for developing flexible, electrically conductive sensors with enhanced performance and adjustable properties. This study investigates the effect of static magnetic fields applied on thermoplastic elastomer (TPE) composites with magnetite and multi-walled carbon nanotubes (MWCNT). The composites were prepared by compression moulding and the magnetic field was applied on the mould cavity during processing. Composites were prepared with a range of concentrations of magnetite (1, 3, and 6 wt.%) and MWCNT (1 and 3 wt.%). The effect of particle concentration on composite viscosity was investigated. Rheological analysis showed that MWCNTs significantly increased the composite viscosity while magnetite had minimal impact, ensuring stable processing and facilitating particle orientation under a static magnetic field. Particle orientation and electrical conductivity were evaluated for the composites prepared with different particle concentrations under different processing temperatures. Magnetic field application at 190 °C enhanced magnetite/MWCNT interactions, substantially reducing electrical resistivity while preserving thermal stability. The composites showed no degradation at 220 °C and above, demonstrating suitability for high-temperature applications requiring thermal resilience. Furthermore, magnetite's magnetic response facilitated precise sensor positioning and strong adhesion to polyimide substrates at 220 °C. These findings demonstrate a scalable and adaptable approach for enhancing sensor performance and positioning, with broad potential in flexible electronics.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic field-assisted control of magnetite location is a promising strategy for developing flexible, electrically conductive sensors with enhanced performance and adjustable properties. This study investigates the effect of static magnetic fields applied on thermoplastic elastomer (TPE) composites with magnetite and multi-walled carbon nanotubes (MWCNT). The composites were prepared by compression moulding and the magnetic field was applied on the mould cavity during processing. Composites were prepared with a range of concentrations of magnetite (1, 3, and 6 wt.%) and MWCNT (1 and 3 wt.%). The effect of particle concentration on composite viscosity was investigated. Rheological analysis showed that MWCNTs significantly increased the composite viscosity while magnetite had minimal impact, ensuring stable processing and facilitating particle orientation under a static magnetic field. Particle orientation and electrical conductivity were evaluated for the composites prepared with different particle concentrations under different processing temperatures. Magnetic field application at 190 °C enhanced magnetite/MWCNT interactions, substantially reducing electrical resistivity while preserving thermal stability. The composites showed no degradation at 220 °C and above, demonstrating suitability for high-temperature applications requiring thermal resilience. Furthermore, magnetite's magnetic response facilitated precise sensor positioning and strong adhesion to polyimide substrates at 220 °C. These findings demonstrate a scalable and adaptable approach for enhancing sensor performance and positioning, with broad potential in flexible electronics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信