Increased fecal glycocholic acid levels correlate with obesity in conjunction with the depletion of archaea: The Dosanco Health Study

IF 4.8 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ryodai Yamamura , Ryo Okubo , Shigekazu Ukawa , Koshi Nakamura , Emiko Okada , Takafumi Nakagawa , Akihiro Imae , Takashi Kimura , Akiko Tamakoshi
{"title":"Increased fecal glycocholic acid levels correlate with obesity in conjunction with the depletion of archaea: The Dosanco Health Study","authors":"Ryodai Yamamura ,&nbsp;Ryo Okubo ,&nbsp;Shigekazu Ukawa ,&nbsp;Koshi Nakamura ,&nbsp;Emiko Okada ,&nbsp;Takafumi Nakagawa ,&nbsp;Akihiro Imae ,&nbsp;Takashi Kimura ,&nbsp;Akiko Tamakoshi","doi":"10.1016/j.jnutbio.2025.109846","DOIUrl":null,"url":null,"abstract":"<div><div>Recent studies have focused on the relationship between obesity and gut microbiota. This study aims to identify fecal components and gut bacterial species associated with different BMI categories. In this study, 538 participants aged ≥18 years were categorized into underweight, normal, and obese groups based on BMI (cutoffs: 18.5 and 25.0 kg/m²). We compared 30 fecal components among these groups and calculated correlation coefficients between each component and BMI. Participants were then divided into quartiles based on fecal component levels correlated with BMI, and the prevalence ratio (PR) of obesity was calculated, adjusted for confounding factors. We also analyzed the composition and diversity of gut microbiota and bacterial gene expression among the quartiles for each fecal component. Fecal glycocholic acid (GCA) showed a significant positive correlation with BMI. The PR for obesity in the highest quartile of fecal GCA was 3.30 (95% CI, 1.21–9.54), indicating a significantly higher risk of obesity compared to the lowest quartile. Gut microbiota analysis revealed significant differences in the abundance of Ruminococcaceae Incertae Sedis, <em>Faecalibacterium</em>, and <em>Methanobrevibacter</em>, with <em>Methanobrevibacter</em> being absent in the higher quartiles of fecal GCA. Additionally, gene expression for enzymes involved in the deconjugation of conjugated bile acids, including GCA, was downregulated in the highest quartile. Increased fecal GCA levels are positively correlated with obesity, alongside a depletion of archaea.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"139 ","pages":"Article 109846"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325000099","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have focused on the relationship between obesity and gut microbiota. This study aims to identify fecal components and gut bacterial species associated with different BMI categories. In this study, 538 participants aged ≥18 years were categorized into underweight, normal, and obese groups based on BMI (cutoffs: 18.5 and 25.0 kg/m²). We compared 30 fecal components among these groups and calculated correlation coefficients between each component and BMI. Participants were then divided into quartiles based on fecal component levels correlated with BMI, and the prevalence ratio (PR) of obesity was calculated, adjusted for confounding factors. We also analyzed the composition and diversity of gut microbiota and bacterial gene expression among the quartiles for each fecal component. Fecal glycocholic acid (GCA) showed a significant positive correlation with BMI. The PR for obesity in the highest quartile of fecal GCA was 3.30 (95% CI, 1.21–9.54), indicating a significantly higher risk of obesity compared to the lowest quartile. Gut microbiota analysis revealed significant differences in the abundance of Ruminococcaceae Incertae Sedis, Faecalibacterium, and Methanobrevibacter, with Methanobrevibacter being absent in the higher quartiles of fecal GCA. Additionally, gene expression for enzymes involved in the deconjugation of conjugated bile acids, including GCA, was downregulated in the highest quartile. Increased fecal GCA levels are positively correlated with obesity, alongside a depletion of archaea.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nutritional Biochemistry
Journal of Nutritional Biochemistry 医学-生化与分子生物学
CiteScore
9.50
自引率
3.60%
发文量
237
审稿时长
68 days
期刊介绍: Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology. Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信