Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-01-20 DOI:10.3390/ma18020462
Rashique Iftekhar Rousseau, Abdel-Hakim Bouzid
{"title":"Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.","authors":"Rashique Iftekhar Rousseau, Abdel-Hakim Bouzid","doi":"10.3390/ma18020462","DOIUrl":null,"url":null,"abstract":"<p><p>Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading. This study investigates how component stiffness influences self-loosening in bolted joints by varying the material and thickness of clamped members. An experimental setup replicating real-world conditions is devised to simulate loosening caused by cyclic lateral displacement. Tests are conducted using steel and high-density polyethylene (HDPE) clamped members of different grip lengths to explore the relationship between stiffness and self-loosening. Key parameters measured include bolt axial load, transverse force on clamped members, relative displacement, and rotation between the bolt and nut. The findings provide valuable insights into the effects of stiffness across various clamped member materials and grip length combinations, which can enhance the understanding of conditions that promote loosening resistance. Moreover, by highlighting stage-II or rotational loosening, with each test resulting in complete preload loss, the study provides a comparative analysis of the influencing factors. This enables the identification of distinct loosening patterns and supports the development of improved bolted joint designs to reduce loosening.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18020462","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading. This study investigates how component stiffness influences self-loosening in bolted joints by varying the material and thickness of clamped members. An experimental setup replicating real-world conditions is devised to simulate loosening caused by cyclic lateral displacement. Tests are conducted using steel and high-density polyethylene (HDPE) clamped members of different grip lengths to explore the relationship between stiffness and self-loosening. Key parameters measured include bolt axial load, transverse force on clamped members, relative displacement, and rotation between the bolt and nut. The findings provide valuable insights into the effects of stiffness across various clamped member materials and grip length combinations, which can enhance the understanding of conditions that promote loosening resistance. Moreover, by highlighting stage-II or rotational loosening, with each test resulting in complete preload loss, the study provides a comparative analysis of the influencing factors. This enables the identification of distinct loosening patterns and supports the development of improved bolted joint designs to reduce loosening.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信