{"title":"Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.","authors":"Rashique Iftekhar Rousseau, Abdel-Hakim Bouzid","doi":"10.3390/ma18020462","DOIUrl":null,"url":null,"abstract":"<p><p>Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading. This study investigates how component stiffness influences self-loosening in bolted joints by varying the material and thickness of clamped members. An experimental setup replicating real-world conditions is devised to simulate loosening caused by cyclic lateral displacement. Tests are conducted using steel and high-density polyethylene (HDPE) clamped members of different grip lengths to explore the relationship between stiffness and self-loosening. Key parameters measured include bolt axial load, transverse force on clamped members, relative displacement, and rotation between the bolt and nut. The findings provide valuable insights into the effects of stiffness across various clamped member materials and grip length combinations, which can enhance the understanding of conditions that promote loosening resistance. Moreover, by highlighting stage-II or rotational loosening, with each test resulting in complete preload loss, the study provides a comparative analysis of the influencing factors. This enables the identification of distinct loosening patterns and supports the development of improved bolted joint designs to reduce loosening.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18020462","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading. This study investigates how component stiffness influences self-loosening in bolted joints by varying the material and thickness of clamped members. An experimental setup replicating real-world conditions is devised to simulate loosening caused by cyclic lateral displacement. Tests are conducted using steel and high-density polyethylene (HDPE) clamped members of different grip lengths to explore the relationship between stiffness and self-loosening. Key parameters measured include bolt axial load, transverse force on clamped members, relative displacement, and rotation between the bolt and nut. The findings provide valuable insights into the effects of stiffness across various clamped member materials and grip length combinations, which can enhance the understanding of conditions that promote loosening resistance. Moreover, by highlighting stage-II or rotational loosening, with each test resulting in complete preload loss, the study provides a comparative analysis of the influencing factors. This enables the identification of distinct loosening patterns and supports the development of improved bolted joint designs to reduce loosening.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.