Research progress on environmental behavior of arsenic in Qinghai-Tibet Plateau soil

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xitong Li, Chuangchuang Zhang, Aofan Wang, Tieliang Zhang, Zeying He, Yujie Zhao, Wenjing Liu, Qiwen Zhou
{"title":"Research progress on environmental behavior of arsenic in Qinghai-Tibet Plateau soil","authors":"Xitong Li,&nbsp;Chuangchuang Zhang,&nbsp;Aofan Wang,&nbsp;Tieliang Zhang,&nbsp;Zeying He,&nbsp;Yujie Zhao,&nbsp;Wenjing Liu,&nbsp;Qiwen Zhou","doi":"10.1016/j.jes.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>The Qinghai-Tibet Plateau, with its high altitude and cold climate, is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic (As) levels in the soil, largely due to its rich mineral and geothermal resources. This review provides a comprehensive analysis of As content, focusing on its distribution, environmental migration, and transformation behavior across the plateau. The review further evaluates the distribution of As in different functional areas, revealing that geothermal fields (107.2 mg/kg), mining areas (53.8 mg/kg), and croplands (39.3 mg/kg) have the highest As concentrations, followed by river and lake sediments and adjacent areas (33.1 mg/kg). These elevated levels are primarily attributed to the presence of As-rich minerals, such as arsenopyrite and pyrite. Additionally, human activities, including mining and geothermal energy production, exacerbate the release of As into the environment. The review also highlights the role of local microorganisms, particularly those from the phyla Proteobacteria and Actinobacteria, which possess As metabolic genes that facilitate As translocation. Given the unique climatic conditions of the plateau, conventional methods for As control may not be fully effective. However, the review identifies promising remediation strategies that are environmentally adaptable, such as the use of local microorganisms, specific adsorbents, and integrated technologies, which offer potential solutions for managing and utilizing As-contaminated soils on the plateau.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"153 ","pages":"Pages 237-250"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224004261","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Qinghai-Tibet Plateau, with its high altitude and cold climate, is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic (As) levels in the soil, largely due to its rich mineral and geothermal resources. This review provides a comprehensive analysis of As content, focusing on its distribution, environmental migration, and transformation behavior across the plateau. The review further evaluates the distribution of As in different functional areas, revealing that geothermal fields (107.2 mg/kg), mining areas (53.8 mg/kg), and croplands (39.3 mg/kg) have the highest As concentrations, followed by river and lake sediments and adjacent areas (33.1 mg/kg). These elevated levels are primarily attributed to the presence of As-rich minerals, such as arsenopyrite and pyrite. Additionally, human activities, including mining and geothermal energy production, exacerbate the release of As into the environment. The review also highlights the role of local microorganisms, particularly those from the phyla Proteobacteria and Actinobacteria, which possess As metabolic genes that facilitate As translocation. Given the unique climatic conditions of the plateau, conventional methods for As control may not be fully effective. However, the review identifies promising remediation strategies that are environmentally adaptable, such as the use of local microorganisms, specific adsorbents, and integrated technologies, which offer potential solutions for managing and utilizing As-contaminated soils on the plateau.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信