Impact of Radial Electrode Coverage on the Performance of Liquid-Deployed PMUTs: A Dynamic and Kinematic Study.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-01-12 DOI:10.3390/mi16010080
Stephen Sammut, Edward Gatt, Ruben Paul Borg
{"title":"Impact of Radial Electrode Coverage on the Performance of Liquid-Deployed PMUTs: A Dynamic and Kinematic Study.","authors":"Stephen Sammut, Edward Gatt, Ruben Paul Borg","doi":"10.3390/mi16010080","DOIUrl":null,"url":null,"abstract":"<p><p>This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system. PMUTs designed for integration into the pore solution of reinforced concrete structures need to operate effectively with liquid coupling fluids to ensure optimal sonic energy transfer into the structure. This paper outlines the techniques employed to optimize the central electrode's percentage radial cover of the piezoelectric layer, in circular PMUTs resonating at around 100 kHz. This optimisation was achieved using Finite Element Modelling, laser vibrometry, and hydrophone experimental techniques. The results demonstrated that a radial electrode cover between 65 and 70% significantly enhances the kinematic and dynamic characteristics of a PMUT's diaphragm when subjected to the excitation of a sine wave electrical signal. The paper also includes advanced time domain finite element analysis, through which the authors aimed to illustrate the diaphragm's movements at various levels of radial electrode coverage.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system. PMUTs designed for integration into the pore solution of reinforced concrete structures need to operate effectively with liquid coupling fluids to ensure optimal sonic energy transfer into the structure. This paper outlines the techniques employed to optimize the central electrode's percentage radial cover of the piezoelectric layer, in circular PMUTs resonating at around 100 kHz. This optimisation was achieved using Finite Element Modelling, laser vibrometry, and hydrophone experimental techniques. The results demonstrated that a radial electrode cover between 65 and 70% significantly enhances the kinematic and dynamic characteristics of a PMUT's diaphragm when subjected to the excitation of a sine wave electrical signal. The paper also includes advanced time domain finite element analysis, through which the authors aimed to illustrate the diaphragm's movements at various levels of radial electrode coverage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信