Kyu-Jin Jung , Thierry G. Meerbothe , Chuanjiang Cui , Mina Park , Cornelis A.T. van den Berg , Stefano Mandija , Dong-Hyun Kim
{"title":"A joint three-plane physics-constrained deep learning based polynomial fitting approach for MR electrical properties tomography","authors":"Kyu-Jin Jung , Thierry G. Meerbothe , Chuanjiang Cui , Mina Park , Cornelis A.T. van den Berg , Stefano Mandija , Dong-Hyun Kim","doi":"10.1016/j.neuroimage.2025.121054","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact. Deep learning-based approaches are robust to these artifacts but need extensive training datasets and suffer from generalization to unseen data. To address these issues, we introduce a joint three-plane physics-constrained deep learning framework for polynomial fitting MR-EPT by merging physics-based weighted polynomial fitting with deep learning. Within this framework, deep learning is used to discern the optimal polynomial fitting weights for a physics based polynomial fitting reconstruction on the complex <span><math><msubsup><mi>B</mi><mn>1</mn><mo>+</mo></msubsup></math></span> data. For the prediction of optimal fitting coefficients, three neural networks were separately trained on simulated heterogeneous brain models to predict optimal polynomial weighting parameters in three orthogonal planes. Then, the network weights were jointly optimized to estimate the polynomial weights in each plane for a combined conductivity reconstruction. Based on this physics-constrained deep learning approach, we achieved an improvement of conductivity estimation accuracy in comparison to a single plane estimation and a reduction of computational load. The results demonstrate that the proposed method based on 3D data exhibits superior performance in comparison to conventional polynomial fitting methods in terms of capturing anatomical detail and homogeneity. Crucially, in-vivo application of the proposed method showed that the method generalizes well to in-vivo data, without introducing significant errors or artifacts. This generalization makes the presented method a promising candidate for use in clinical applications.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"307 ","pages":"Article 121054"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000564","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact. Deep learning-based approaches are robust to these artifacts but need extensive training datasets and suffer from generalization to unseen data. To address these issues, we introduce a joint three-plane physics-constrained deep learning framework for polynomial fitting MR-EPT by merging physics-based weighted polynomial fitting with deep learning. Within this framework, deep learning is used to discern the optimal polynomial fitting weights for a physics based polynomial fitting reconstruction on the complex data. For the prediction of optimal fitting coefficients, three neural networks were separately trained on simulated heterogeneous brain models to predict optimal polynomial weighting parameters in three orthogonal planes. Then, the network weights were jointly optimized to estimate the polynomial weights in each plane for a combined conductivity reconstruction. Based on this physics-constrained deep learning approach, we achieved an improvement of conductivity estimation accuracy in comparison to a single plane estimation and a reduction of computational load. The results demonstrate that the proposed method based on 3D data exhibits superior performance in comparison to conventional polynomial fitting methods in terms of capturing anatomical detail and homogeneity. Crucially, in-vivo application of the proposed method showed that the method generalizes well to in-vivo data, without introducing significant errors or artifacts. This generalization makes the presented method a promising candidate for use in clinical applications.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.