NcSWP8, a New Spore Wall Protein, Interacts with Polar Tube Proteins in the Parasitic Microsporidia Vairimorpha (Nosema) ceranae.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Pengfei Wang, Dufu Li, Qianmin Hai, Siming Liu, Yueyue Zhang, Jun Zhang, Jinshan Xu, Zhengang Ma, Zeyang Zhou
{"title":"NcSWP8, a New Spore Wall Protein, Interacts with Polar Tube Proteins in the Parasitic Microsporidia <i>Vairimorpha (Nosema) ceranae</i>.","authors":"Pengfei Wang, Dufu Li, Qianmin Hai, Siming Liu, Yueyue Zhang, Jun Zhang, Jinshan Xu, Zhengang Ma, Zeyang Zhou","doi":"10.3390/microorganisms13010142","DOIUrl":null,"url":null,"abstract":"<p><p><i>Vairimorpha (Nosema) ceranae</i> is a pathogen that affects <i>Apis mellifera</i> and <i>Apis ceranae</i> Fabricius, capable of spreading within and between honeybee colonies. The spore wall of microsporidia is the initial structure to contact the host cell directly, which may play a crucial role in the infection process. Currently, several spore wall proteins have been identified in microsporidia, but only two spore wall proteins from <i>V. ceranae</i> have been characterized. Here, we report the expression and identification of a novel spore wall protein, NcSWP8, with a molecular mass of 21.37 kDa in <i>V. ceranae</i>. Subcellular localization analysis revealed that NcSWP8 was localized on the spore wall of <i>V. ceranae</i>. Co-immunoprecipitation and Far-Western blotting experiments demonstrated that NcSWP8 could stably interact with polar tube proteins, NcPTP2 and NcPTP3. The antibody blocking assay significantly decreased their infection rate, indicating that NcSWP8 played a significant role in the process of <i>V. ceranae</i> infection. These results together suggested that NcSWP8 was a new spore wall protein localized to the spore wall and interacted with the polar tube proteins, playing a crucial role in supporting the formation of the spore wall and potentially affecting the process of infection of <i>V. ceranae</i>.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010142","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vairimorpha (Nosema) ceranae is a pathogen that affects Apis mellifera and Apis ceranae Fabricius, capable of spreading within and between honeybee colonies. The spore wall of microsporidia is the initial structure to contact the host cell directly, which may play a crucial role in the infection process. Currently, several spore wall proteins have been identified in microsporidia, but only two spore wall proteins from V. ceranae have been characterized. Here, we report the expression and identification of a novel spore wall protein, NcSWP8, with a molecular mass of 21.37 kDa in V. ceranae. Subcellular localization analysis revealed that NcSWP8 was localized on the spore wall of V. ceranae. Co-immunoprecipitation and Far-Western blotting experiments demonstrated that NcSWP8 could stably interact with polar tube proteins, NcPTP2 and NcPTP3. The antibody blocking assay significantly decreased their infection rate, indicating that NcSWP8 played a significant role in the process of V. ceranae infection. These results together suggested that NcSWP8 was a new spore wall protein localized to the spore wall and interacted with the polar tube proteins, playing a crucial role in supporting the formation of the spore wall and potentially affecting the process of infection of V. ceranae.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信