Mechanical Strength and Mechanism Analysis of Silt Soil Cured by Straw Ash-Calcium Carbide Slag.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-01-20 DOI:10.3390/ma18020455
Yue Huang, Wenyuan Xu, Yongcheng Ji, Liang Yang
{"title":"Mechanical Strength and Mechanism Analysis of Silt Soil Cured by Straw Ash-Calcium Carbide Slag.","authors":"Yue Huang, Wenyuan Xu, Yongcheng Ji, Liang Yang","doi":"10.3390/ma18020455","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag are proposed as effective curing agents for silt soil. Various indoor tests were conducted to evaluate the mechanical properties of the cured silt soil, while X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze its mineral composition and micro-morphology. The results showed that increasing the curing agent dosage significantly improved soil strength. Specifically, at a 10% dosage, the California bearing ratio (CBR) value increased to 18.7%, which is 13.4 times higher than untreated silt soil and exceeds road specifications by 8%. At a 20% dosage, the unconfined compressive strength (UCS) value reached 1.38 MPa, meeting the ≥0.8 MPa requirement for roadbeds. Based on economic considerations, a 20% dosage of straw ash-calcium carbide slag was selected as optimal. Microscopic analysis revealed that the addition of these agents promoted the formation of hydrated calcium silicate, filling pores and enhancing the mechanical properties of the cured soil, resulting in a more dense and stable structure.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18020455","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag are proposed as effective curing agents for silt soil. Various indoor tests were conducted to evaluate the mechanical properties of the cured silt soil, while X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze its mineral composition and micro-morphology. The results showed that increasing the curing agent dosage significantly improved soil strength. Specifically, at a 10% dosage, the California bearing ratio (CBR) value increased to 18.7%, which is 13.4 times higher than untreated silt soil and exceeds road specifications by 8%. At a 20% dosage, the unconfined compressive strength (UCS) value reached 1.38 MPa, meeting the ≥0.8 MPa requirement for roadbeds. Based on economic considerations, a 20% dosage of straw ash-calcium carbide slag was selected as optimal. Microscopic analysis revealed that the addition of these agents promoted the formation of hydrated calcium silicate, filling pores and enhancing the mechanical properties of the cured soil, resulting in a more dense and stable structure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信