Highly Sensitive Non-Dispersive Infrared Gas Sensor with Innovative Application for Monitoring Carbon Dioxide Emissions from Lithium-Ion Battery Thermal Runaway.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-12-29 DOI:10.3390/mi16010036
Liang Luo, Jianwei Chen, Aisn Gioronara Hui, Rongzhen Liu, Yao Zhou, Haitong Liang, Ziyuan Wang, Haosu Luo, Fei Fang
{"title":"Highly Sensitive Non-Dispersive Infrared Gas Sensor with Innovative Application for Monitoring Carbon Dioxide Emissions from Lithium-Ion Battery Thermal Runaway.","authors":"Liang Luo, Jianwei Chen, Aisn Gioronara Hui, Rongzhen Liu, Yao Zhou, Haitong Liang, Ziyuan Wang, Haosu Luo, Fei Fang","doi":"10.3390/mi16010036","DOIUrl":null,"url":null,"abstract":"<p><p>The safety of power batteries in the automotive industry is of paramount importance and cannot be emphasized enough. As lithium-ion battery technology continues to evolve, the energy density of these batteries increases, thereby amplifying the potential risks linked to battery failures. This study explores pivotal safety challenges within the electric vehicle sector, with a particular focus on thermal runaway and gas emissions originating from lithium-ion batteries. We offer a non-dispersive infrared (NDIR) gas sensor designed to efficiently monitor battery emissions. Notably, carbon dioxide (CO<sub>2</sub>) gas sensors are emphasized for their ability to enhance early-warning systems, facilitating the timely detection of potential issues and, in turn, improving the overall safety standards of electric vehicles. In this study, we introduce a novel CO<sub>2</sub> gas sensor based on the advanced pyroelectric single-crystal lead niobium magnesium titanate (PMNT), which exhibits exceptionally high pyroelectric properties compared to commercially available materials, such as lithium tantalate single crystals and lead zirconate titanate ceramics. The specific detection rate of PMNT single-crystal pyroelectric infrared detectors is more than four times higher than lithium tantalate single-crystal infrared detectors. The PMNT single-crystal NDIR gas detector is used to monitor thermal runaway in lithium-ion batteries, enabling the rapid and highly accurate detection of gases released by the battery. This research offers an in-depth exploration of real-time monitoring for power battery safety, utilizing the cutting-edge pyroelectric single-crystal gas sensor. Beyond providing valuable insights, the study also presents practical recommendations for mitigating the risks of thermal runaway in lithium-ion batteries, with a particular emphasis on the development of effective warning systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The safety of power batteries in the automotive industry is of paramount importance and cannot be emphasized enough. As lithium-ion battery technology continues to evolve, the energy density of these batteries increases, thereby amplifying the potential risks linked to battery failures. This study explores pivotal safety challenges within the electric vehicle sector, with a particular focus on thermal runaway and gas emissions originating from lithium-ion batteries. We offer a non-dispersive infrared (NDIR) gas sensor designed to efficiently monitor battery emissions. Notably, carbon dioxide (CO2) gas sensors are emphasized for their ability to enhance early-warning systems, facilitating the timely detection of potential issues and, in turn, improving the overall safety standards of electric vehicles. In this study, we introduce a novel CO2 gas sensor based on the advanced pyroelectric single-crystal lead niobium magnesium titanate (PMNT), which exhibits exceptionally high pyroelectric properties compared to commercially available materials, such as lithium tantalate single crystals and lead zirconate titanate ceramics. The specific detection rate of PMNT single-crystal pyroelectric infrared detectors is more than four times higher than lithium tantalate single-crystal infrared detectors. The PMNT single-crystal NDIR gas detector is used to monitor thermal runaway in lithium-ion batteries, enabling the rapid and highly accurate detection of gases released by the battery. This research offers an in-depth exploration of real-time monitoring for power battery safety, utilizing the cutting-edge pyroelectric single-crystal gas sensor. Beyond providing valuable insights, the study also presents practical recommendations for mitigating the risks of thermal runaway in lithium-ion batteries, with a particular emphasis on the development of effective warning systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信