GSCAT-UNET: Enhanced U-Net model with spatial-channel attention gate and three-level attention for oil spill detection using SAR data

IF 5.3 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Kinjal Prajapati , Madhuri Bhavsar , Alka Mahajan
{"title":"GSCAT-UNET: Enhanced U-Net model with spatial-channel attention gate and three-level attention for oil spill detection using SAR data","authors":"Kinjal Prajapati ,&nbsp;Madhuri Bhavsar ,&nbsp;Alka Mahajan","doi":"10.1016/j.marpolbul.2025.117583","DOIUrl":null,"url":null,"abstract":"<div><div>Marine pollution due to oil spills presents major risks to coastal areas and aquatic life, leading to serious environmental health concerns. Oil Spill detection using SAR data has transitioned from traditional segmentation to a variety of machine learning &amp; deep learning models like UNET proving its efficiency for the task. This research paper proposes a GSCAT-UNET model for efficient oil spill detection and discrimination from lookalikes. The GSCAT-UNET is an advanced UNET architecture comprising of Spatial-Channel Attention Gates(SCAG), Three Level Attention Module(TLM) and Global Feature Module(GFM) for global level oil spill feature enhancement leading to effective oil spill detection and discrimination from lookalikes. Sentinel-1 Dual-Pol SAR dataset of 1112 images and respective labeled images (5 classes) including confirmed oil spills and lookalikes is used to demonstrate the efficacy of the GSCAT-UNET model. The GSCAT-UNET model significantly enhances segmentation accuracy and robustness for oil spill detection with 5% higher accuracy and 29% higher IoU i.e. 93.7% compared to the UNET segmentation model, addressing the challenges of SAR data complexities and imbalanced datasets. The strong performance of the GSCAT-UNET model demonstrates its potential as a critical tool for disaster response and environmental monitoring.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"212 ","pages":"Article 117583"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X2500058X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Marine pollution due to oil spills presents major risks to coastal areas and aquatic life, leading to serious environmental health concerns. Oil Spill detection using SAR data has transitioned from traditional segmentation to a variety of machine learning & deep learning models like UNET proving its efficiency for the task. This research paper proposes a GSCAT-UNET model for efficient oil spill detection and discrimination from lookalikes. The GSCAT-UNET is an advanced UNET architecture comprising of Spatial-Channel Attention Gates(SCAG), Three Level Attention Module(TLM) and Global Feature Module(GFM) for global level oil spill feature enhancement leading to effective oil spill detection and discrimination from lookalikes. Sentinel-1 Dual-Pol SAR dataset of 1112 images and respective labeled images (5 classes) including confirmed oil spills and lookalikes is used to demonstrate the efficacy of the GSCAT-UNET model. The GSCAT-UNET model significantly enhances segmentation accuracy and robustness for oil spill detection with 5% higher accuracy and 29% higher IoU i.e. 93.7% compared to the UNET segmentation model, addressing the challenges of SAR data complexities and imbalanced datasets. The strong performance of the GSCAT-UNET model demonstrates its potential as a critical tool for disaster response and environmental monitoring.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine pollution bulletin
Marine pollution bulletin 环境科学-海洋与淡水生物学
CiteScore
10.20
自引率
15.50%
发文量
1077
审稿时长
68 days
期刊介绍: Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信