Running in the heat similarly reduces lipid oxidation and peak oxygen consumption in trained runners and inactive individuals.

IF 3.3 3区 医学 Q1 PHYSIOLOGY
Journal of applied physiology Pub Date : 2025-02-01 Epub Date: 2025-01-24 DOI:10.1152/japplphysiol.00710.2024
Loïs Mougin, Heather Z Macrae, Alisha Henderson, Thomas G Cable, Lee Taylor, Lewis J James, Stephen A Mears
{"title":"Running in the heat similarly reduces lipid oxidation and peak oxygen consumption in trained runners and inactive individuals.","authors":"Loïs Mougin, Heather Z Macrae, Alisha Henderson, Thomas G Cable, Lee Taylor, Lewis J James, Stephen A Mears","doi":"10.1152/japplphysiol.00710.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This study compared oxygen consumption and substrate oxidation while exercising in hot and temperate conditions in individuals with different physical activity statuses (i.e., inactive individuals vs. trained runners). Ten inactive individuals (IA: 26 ± 6 yr; 79.1 ± 14.1 kg; 40.7 ± 5.1 mL·kg<sup>-1</sup>·min<sup>-1</sup>) and 10 trained runners (TR: 25 ± 6 yr; 69.5 ± 9.1 kg; 63.1 ± 5.1 mL·kg<sup>-1</sup>·min<sup>-1</sup>) completed two incremental exercise tests (4-min stages) until exhaustion in temperate (TEMP: 18.7 ± 0.1°C; 43.2 ± 4.1% relative humidity) and hot (HOT: 34.4 ± 0.2°C and 42.6 ± 1.6% relative humidity) conditions. Expired gas and blood lactate concentrations were measured at the end of each stage. Peak oxygen consumption similarly decreased in HOT compared with TEMP for IA and TR [-13.2 ± 4.5% vs. -15.2 ± 7%; <i>P</i> = 0.571; effect size (ES) = 0.25]. In HOT compared with TEMP, lipid oxidation, from 30% to 70% of peak oxygen consumption (V̇o<sub>2peak</sub>), was reduced for both groups (IA: <i>P</i> = 0.023, ES = 0.43; TR: <i>P</i> < 0.001, ES = 0.72), whereas carbohydrate oxidation was increased for TR (<i>P</i> = 0.011; ES = 0.45) but not for IA (<i>P</i> = 0.268; ES = 0.21). Core temperature was different between conditions for TR (higher in HOT, <i>P</i> = 0.017; ES = 0.66) but not for IA (<i>P</i> = 0.901; ES = 0.25). Despite reduced physiological capacities in IA, both populations demonstrated reductions in lipid utilization and peak oxygen consumption in hot compared with temperate conditions. However, the increased carbohydrate oxidation in HOT for TR was not observed in IA, potentially explained by lower thermal strain. <b>NEW & NOTEWORTHY</b> This study shows that lipid oxidation and oxygen consumption are similarly affected by heat exposure in trained runners and inactive individuals. Carbohydrate oxidation and core temperature are greater in hot conditions in trained runners but not in inactive individuals. A lower metabolic heat production in inactive individuals for a similar relative intensity compared with trained runners could explain these differences in core temperature.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"508-517"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00710.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study compared oxygen consumption and substrate oxidation while exercising in hot and temperate conditions in individuals with different physical activity statuses (i.e., inactive individuals vs. trained runners). Ten inactive individuals (IA: 26 ± 6 yr; 79.1 ± 14.1 kg; 40.7 ± 5.1 mL·kg-1·min-1) and 10 trained runners (TR: 25 ± 6 yr; 69.5 ± 9.1 kg; 63.1 ± 5.1 mL·kg-1·min-1) completed two incremental exercise tests (4-min stages) until exhaustion in temperate (TEMP: 18.7 ± 0.1°C; 43.2 ± 4.1% relative humidity) and hot (HOT: 34.4 ± 0.2°C and 42.6 ± 1.6% relative humidity) conditions. Expired gas and blood lactate concentrations were measured at the end of each stage. Peak oxygen consumption similarly decreased in HOT compared with TEMP for IA and TR [-13.2 ± 4.5% vs. -15.2 ± 7%; P = 0.571; effect size (ES) = 0.25]. In HOT compared with TEMP, lipid oxidation, from 30% to 70% of peak oxygen consumption (V̇o2peak), was reduced for both groups (IA: P = 0.023, ES = 0.43; TR: P < 0.001, ES = 0.72), whereas carbohydrate oxidation was increased for TR (P = 0.011; ES = 0.45) but not for IA (P = 0.268; ES = 0.21). Core temperature was different between conditions for TR (higher in HOT, P = 0.017; ES = 0.66) but not for IA (P = 0.901; ES = 0.25). Despite reduced physiological capacities in IA, both populations demonstrated reductions in lipid utilization and peak oxygen consumption in hot compared with temperate conditions. However, the increased carbohydrate oxidation in HOT for TR was not observed in IA, potentially explained by lower thermal strain. NEW & NOTEWORTHY This study shows that lipid oxidation and oxygen consumption are similarly affected by heat exposure in trained runners and inactive individuals. Carbohydrate oxidation and core temperature are greater in hot conditions in trained runners but not in inactive individuals. A lower metabolic heat production in inactive individuals for a similar relative intensity compared with trained runners could explain these differences in core temperature.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信