Irina S Sesorova, Eugeny V Bedyaev, Pavel S Vavilov, Sergei L Levin, Alexander A Mironov
{"title":"Regeneration of Vascular Endothelium in Different Large Vessels.","authors":"Irina S Sesorova, Eugeny V Bedyaev, Pavel S Vavilov, Sergei L Levin, Alexander A Mironov","doi":"10.3390/ijms26020837","DOIUrl":null,"url":null,"abstract":"<p><p>The regeneration of endothelial cells (ECs) lining arteries, veins, and large lymphatic vessels plays an important role in vascular pathology. To understand the mechanisms of atherogenesis, it is important to determine what happens during endothelial regeneration. A comparison of these processes in the above-mentioned vessels reveals both similarities and some significant differences. Regeneration is carried out by moving intact ECs from the edges of the viable endothelial layer towards the centre of the EC damage zone. A sharp decrease in contact inhibition leads to the spreading of the edges of the ECs situated on the damage border. This stimulates the second row of ECs to enter the S-phase, then the G2 phase of cell cycle, and finally mitosis. In all three types of vessels studied, mitotically dividing ECs were found using correlation light and electron microscopy. These ECs have a body protruding into the lumen of the vessel, covered with micro-villi and other outgrowths. The level of EC rounding and protruding is highest in the arteries and least pronounced in the lymphatic vessels. The intercellular contacts of mitotically dividing cells become wider. The EC division leads to an increase in the density of ECs. ECs moving over the damaged area and partially outside the damaged area acquire a fusiform shape. <i>In the process of regeneration of arterial endothelium, the damaged ECs are removed. Then health ECs move to a surface devoid of endothelium, and detach spreading out, flattened platelets from the luminal surface of the vessel.</i> In the veins, ECs grow on the surface of platelets and microthrombi. In lymphatic vessels, ECs detach from the basement membrane slower than in the veins and arteries. There, the migrating ECs grow under fibrin fibres. After some time (usually after 30 days), the EC mosaic returns to normal in all three types of vessels.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26020837","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The regeneration of endothelial cells (ECs) lining arteries, veins, and large lymphatic vessels plays an important role in vascular pathology. To understand the mechanisms of atherogenesis, it is important to determine what happens during endothelial regeneration. A comparison of these processes in the above-mentioned vessels reveals both similarities and some significant differences. Regeneration is carried out by moving intact ECs from the edges of the viable endothelial layer towards the centre of the EC damage zone. A sharp decrease in contact inhibition leads to the spreading of the edges of the ECs situated on the damage border. This stimulates the second row of ECs to enter the S-phase, then the G2 phase of cell cycle, and finally mitosis. In all three types of vessels studied, mitotically dividing ECs were found using correlation light and electron microscopy. These ECs have a body protruding into the lumen of the vessel, covered with micro-villi and other outgrowths. The level of EC rounding and protruding is highest in the arteries and least pronounced in the lymphatic vessels. The intercellular contacts of mitotically dividing cells become wider. The EC division leads to an increase in the density of ECs. ECs moving over the damaged area and partially outside the damaged area acquire a fusiform shape. In the process of regeneration of arterial endothelium, the damaged ECs are removed. Then health ECs move to a surface devoid of endothelium, and detach spreading out, flattened platelets from the luminal surface of the vessel. In the veins, ECs grow on the surface of platelets and microthrombi. In lymphatic vessels, ECs detach from the basement membrane slower than in the veins and arteries. There, the migrating ECs grow under fibrin fibres. After some time (usually after 30 days), the EC mosaic returns to normal in all three types of vessels.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).