Fringe Texture Driven Droplet Measurement End-to-End Network Based on Physics Aberrations Restoration of Coherence Scanning Interferometry.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-12-30 DOI:10.3390/mi16010042
Zhou Zhang, Jiankui Chen, Hua Yang, Zhouping Yin
{"title":"Fringe Texture Driven Droplet Measurement End-to-End Network Based on Physics Aberrations Restoration of Coherence Scanning Interferometry.","authors":"Zhou Zhang, Jiankui Chen, Hua Yang, Zhouping Yin","doi":"10.3390/mi16010042","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy. Based on the prior degradation and strong representation for context, a novel method, volume measurement via fringe distribution module (VMFD), is proposed to directly measure the volume by single interferogram without redundant sampling. Firstly, the 3D point spread function (PSF) for CSI imaging is modeling to relate the degradation and image. Secondly, the Zernike to PSF (ZTP) module is proposed to efficiently compute the aberrations to PSF. Then, a physics aberration restoration network (PARN) is designed to remove the degradation via the channel Transformer and U-net architecture. The long term context is learned by PARN and beneficial to restoration. The restored fringes are used to measure the droplet's volume by constrained regression network (CRN) module. Finally, the performances on public datasets and the volume measurement experiments show the promising deblurring, measurement precision and efficiency.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy. Based on the prior degradation and strong representation for context, a novel method, volume measurement via fringe distribution module (VMFD), is proposed to directly measure the volume by single interferogram without redundant sampling. Firstly, the 3D point spread function (PSF) for CSI imaging is modeling to relate the degradation and image. Secondly, the Zernike to PSF (ZTP) module is proposed to efficiently compute the aberrations to PSF. Then, a physics aberration restoration network (PARN) is designed to remove the degradation via the channel Transformer and U-net architecture. The long term context is learned by PARN and beneficial to restoration. The restored fringes are used to measure the droplet's volume by constrained regression network (CRN) module. Finally, the performances on public datasets and the volume measurement experiments show the promising deblurring, measurement precision and efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信