{"title":"Fringe Texture Driven Droplet Measurement End-to-End Network Based on Physics Aberrations Restoration of Coherence Scanning Interferometry.","authors":"Zhou Zhang, Jiankui Chen, Hua Yang, Zhouping Yin","doi":"10.3390/mi16010042","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy. Based on the prior degradation and strong representation for context, a novel method, volume measurement via fringe distribution module (VMFD), is proposed to directly measure the volume by single interferogram without redundant sampling. Firstly, the 3D point spread function (PSF) for CSI imaging is modeling to relate the degradation and image. Secondly, the Zernike to PSF (ZTP) module is proposed to efficiently compute the aberrations to PSF. Then, a physics aberration restoration network (PARN) is designed to remove the degradation via the channel Transformer and U-net architecture. The long term context is learned by PARN and beneficial to restoration. The restored fringes are used to measure the droplet's volume by constrained regression network (CRN) module. Finally, the performances on public datasets and the volume measurement experiments show the promising deblurring, measurement precision and efficiency.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy. Based on the prior degradation and strong representation for context, a novel method, volume measurement via fringe distribution module (VMFD), is proposed to directly measure the volume by single interferogram without redundant sampling. Firstly, the 3D point spread function (PSF) for CSI imaging is modeling to relate the degradation and image. Secondly, the Zernike to PSF (ZTP) module is proposed to efficiently compute the aberrations to PSF. Then, a physics aberration restoration network (PARN) is designed to remove the degradation via the channel Transformer and U-net architecture. The long term context is learned by PARN and beneficial to restoration. The restored fringes are used to measure the droplet's volume by constrained regression network (CRN) module. Finally, the performances on public datasets and the volume measurement experiments show the promising deblurring, measurement precision and efficiency.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.