Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-01-20 DOI:10.3390/ma18020469
Xiaoli Wang, Xiancong Wang, Pingfeng Fu, Jinjin Shi
{"title":"Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.","authors":"Xiaoli Wang, Xiancong Wang, Pingfeng Fu, Jinjin Shi","doi":"10.3390/ma18020469","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil. The optimal composition of the GSCFC stabilizer was determined as 15% SS, 12% GGBS, 16% FGD gypsum, 36% CS, and 12% CFA. The GSCFC-stabilized soil exhibited higher CBR values, with results of 31.38%, 77.13%, and 94.58% for 30, 50, and 98 blows, respectively, compared to 27.23%, 68.34%, and 85.03% for OPC. Additionally, GSCFC-stabilized soil demonstrated superior durability under dry-wet and freeze-thaw cycles, maintaining a 50% higher UCS (1.5 MPa) and a 58.6% lower expansion rate (3.16%) after 15 dry-wet cycles and achieving a BDR of 86.86% after 5 freeze-thaw cycles, compared to 65% for OPC. Rietveld analysis showed increased hydration products (ettringite by 2.63 times, C-S-H by 2.51 times), significantly enhancing soil strength. These findings highlight the potential of GSCFC-stabilized soil for durable road sub-base applications. This research provides theoretical and technical support for the development of sustainable, cost-effective, and eco-friendly soil stabilizers as alternatives to traditional cement-based stabilizers while also promoting the synergistic utilization of multiple solid wastes.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18020469","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil. The optimal composition of the GSCFC stabilizer was determined as 15% SS, 12% GGBS, 16% FGD gypsum, 36% CS, and 12% CFA. The GSCFC-stabilized soil exhibited higher CBR values, with results of 31.38%, 77.13%, and 94.58% for 30, 50, and 98 blows, respectively, compared to 27.23%, 68.34%, and 85.03% for OPC. Additionally, GSCFC-stabilized soil demonstrated superior durability under dry-wet and freeze-thaw cycles, maintaining a 50% higher UCS (1.5 MPa) and a 58.6% lower expansion rate (3.16%) after 15 dry-wet cycles and achieving a BDR of 86.86% after 5 freeze-thaw cycles, compared to 65% for OPC. Rietveld analysis showed increased hydration products (ettringite by 2.63 times, C-S-H by 2.51 times), significantly enhancing soil strength. These findings highlight the potential of GSCFC-stabilized soil for durable road sub-base applications. This research provides theoretical and technical support for the development of sustainable, cost-effective, and eco-friendly soil stabilizers as alternatives to traditional cement-based stabilizers while also promoting the synergistic utilization of multiple solid wastes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信