Biallelic mutations in CDC20 cause female infertility due to oocyte maturation abnormality.

IF 2 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Gynecological Endocrinology Pub Date : 2025-12-01 Epub Date: 2025-01-25 DOI:10.1080/09513590.2025.2451672
Guangzhong Jiao, Jinhao Xing, Zhaoli Du, Hongchu Bao, Xiaoyan Liu
{"title":"Biallelic mutations in CDC20 cause female infertility due to oocyte maturation abnormality.","authors":"Guangzhong Jiao, Jinhao Xing, Zhaoli Du, Hongchu Bao, Xiaoyan Liu","doi":"10.1080/09513590.2025.2451672","DOIUrl":null,"url":null,"abstract":"<p><p>Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during <i>in vitro</i> fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI. Whole-exome sequencing revealed a compound heterozygous mutant (c.533C > A: p.Val458Ala; c.1373T > C: p.Ala178Glu) in cell division cycle 20 (<i>CDC20</i>). Through rigorous validation using Sanger sequencing technology, both of her parents have been confirmed as genetic carriers of these specific mutations. Based on the three-dimensional (3D) structures of the CDC20 protein used to assess the effect of the mutant, the mutant causes a change in hydrogen bond in the protein structure, which may affect the stability of the mutant protein. Previous studies have firmly established CDC20 as a pivotal member of the cell cycle regulation family, playing an indispensable role in the transition from metaphase to anaphase during cell division. Our findings not only broaden the current understanding of <i>CDC20</i> gene mutations but also profoundly illuminate how these mutations serve as potential genetic mechanisms underlying the arrest of oocyte maturation.</p>","PeriodicalId":12865,"journal":{"name":"Gynecological Endocrinology","volume":"41 1","pages":"2451672"},"PeriodicalIF":2.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gynecological Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09513590.2025.2451672","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during in vitro fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI. Whole-exome sequencing revealed a compound heterozygous mutant (c.533C > A: p.Val458Ala; c.1373T > C: p.Ala178Glu) in cell division cycle 20 (CDC20). Through rigorous validation using Sanger sequencing technology, both of her parents have been confirmed as genetic carriers of these specific mutations. Based on the three-dimensional (3D) structures of the CDC20 protein used to assess the effect of the mutant, the mutant causes a change in hydrogen bond in the protein structure, which may affect the stability of the mutant protein. Previous studies have firmly established CDC20 as a pivotal member of the cell cycle regulation family, playing an indispensable role in the transition from metaphase to anaphase during cell division. Our findings not only broaden the current understanding of CDC20 gene mutations but also profoundly illuminate how these mutations serve as potential genetic mechanisms underlying the arrest of oocyte maturation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gynecological Endocrinology
Gynecological Endocrinology 医学-妇产科学
CiteScore
4.40
自引率
5.00%
发文量
137
审稿时长
3-6 weeks
期刊介绍: Gynecological Endocrinology , the official journal of the International Society of Gynecological Endocrinology, covers all the experimental, clinical and therapeutic aspects of this ever more important discipline. It includes, amongst others, papers relating to the control and function of the different endocrine glands in females, the effects of reproductive events on the endocrine system, and the consequences of endocrine disorders on reproduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信