Detection of Adulteration of Extra Virgin Olive Oil via Laser-Induced Breakdown Spectroscopy and Ultraviolet-Visible-Near-Infrared Absorption Spectroscopy: A Comparative Study.

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Foods Pub Date : 2025-01-18 DOI:10.3390/foods14020321
Eleni Nanou, Marios Bekogianni, Theodoros Stamatoukos, Stelios Couris
{"title":"Detection of Adulteration of Extra Virgin Olive Oil via Laser-Induced Breakdown Spectroscopy and Ultraviolet-Visible-Near-Infrared Absorption Spectroscopy: A Comparative Study.","authors":"Eleni Nanou, Marios Bekogianni, Theodoros Stamatoukos, Stelios Couris","doi":"10.3390/foods14020321","DOIUrl":null,"url":null,"abstract":"<p><p>The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer quality and lower price vegetable oils is important for the protection of consumers and the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend worldwide during the last few years. In this work, two optical spectroscopic techniques, namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spectroscopy, are employed and are assessed for EVOO adulteration detection, using the same set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 binary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations (ranging from 10 to 90% <i>w</i>/<i>w</i>). The emission data from LIBS, related to the elemental composition of the samples, and the UV-Vis-NIR absorption spectra, related to the organic ingredients content, are analyzed, both separately and combined (i.e., fused), by Linear Discriminant Analysis (LDA), Support Vector Machines (SVMs), and Logistic Regression (LR). In all cases, very highly predictive accuracies were achieved, attaining, in some cases, 100%. The present results demonstrate the potential of both techniques for efficient and accurate olive oil authentication issues, with the LIBS technique being better suited as it can operate much faster.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14020321","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer quality and lower price vegetable oils is important for the protection of consumers and the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend worldwide during the last few years. In this work, two optical spectroscopic techniques, namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spectroscopy, are employed and are assessed for EVOO adulteration detection, using the same set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 binary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations (ranging from 10 to 90% w/w). The emission data from LIBS, related to the elemental composition of the samples, and the UV-Vis-NIR absorption spectra, related to the organic ingredients content, are analyzed, both separately and combined (i.e., fused), by Linear Discriminant Analysis (LDA), Support Vector Machines (SVMs), and Logistic Regression (LR). In all cases, very highly predictive accuracies were achieved, attaining, in some cases, 100%. The present results demonstrate the potential of both techniques for efficient and accurate olive oil authentication issues, with the LIBS technique being better suited as it can operate much faster.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信