Colon delivery of agomelatine nanoparticles in the treatment of TNBS induced ulcerative colitis.

IF 5.5 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Drug Delivery and Translational Research Pub Date : 2025-09-01 Epub Date: 2025-01-24 DOI:10.1007/s13346-025-01794-z
Parinaz Minaiyan, Jaleh Varshosaz, Mohsen Minaiyan
{"title":"Colon delivery of agomelatine nanoparticles in the treatment of TNBS induced ulcerative colitis.","authors":"Parinaz Minaiyan, Jaleh Varshosaz, Mohsen Minaiyan","doi":"10.1007/s13346-025-01794-z","DOIUrl":null,"url":null,"abstract":"<p><p>Agomelatine is an atypical antidepressant with a long half-life and the mechanism of action similar to melatonin. Agomelatine is a strong antioxidant and its anti-inflammatory effect has been reported in many studies. The current study aimed to evaluate the anti-inflammatory effect of agomelatine loaded in targeted nanoparticles (NPs) in an experimental colitis model induced by trinitrobenzene sulfonic acid (TNBS). Poly(1-vinylpyrrolidone)-graft-(1-triacontene) (PVP-TA) and Eudragit<sup>®</sup>-FS30D polymers were used alone and in combination as time, pH and time/pH dependent formulations respectively. The optimal formula was selected according to their physicochemical properties such as particle size, morphology, and drug release pattern. Six separate groups of rats were induced with 0.5 ml of TNBS. The designed groups were: normal, untreated, agomelatine (25 mg/kg/d), agomelatine/ Eudragit<sup>®</sup>-FS30D NPs, agomelatine/ Eudragit-FS30D/PVP-TA NPs, and dexamethasone (Dex., 1 mg/kg/d). Twenty-four hours after the last administration, colonic tissue was analyzed for macroscopic and histopathological evaluations, along with quantification of malondialdehyde (MDA) and myeloperoxidase (MPO) levels. The results showed that the PVP-TA NPs alone was not suitable regarding to release profile and particle size distribution. However, Eudragit-FS30D NPs alone and Eudragit-FS30D + PVP-TA NPs passed physicochemical evaluations and were both effective in reducing the symptoms and indices of experimental colitis. Taken together, targeted NPs of agomelatine are potentially effective in treatment of ulcerative colitis.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3137-3148"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01794-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Agomelatine is an atypical antidepressant with a long half-life and the mechanism of action similar to melatonin. Agomelatine is a strong antioxidant and its anti-inflammatory effect has been reported in many studies. The current study aimed to evaluate the anti-inflammatory effect of agomelatine loaded in targeted nanoparticles (NPs) in an experimental colitis model induced by trinitrobenzene sulfonic acid (TNBS). Poly(1-vinylpyrrolidone)-graft-(1-triacontene) (PVP-TA) and Eudragit®-FS30D polymers were used alone and in combination as time, pH and time/pH dependent formulations respectively. The optimal formula was selected according to their physicochemical properties such as particle size, morphology, and drug release pattern. Six separate groups of rats were induced with 0.5 ml of TNBS. The designed groups were: normal, untreated, agomelatine (25 mg/kg/d), agomelatine/ Eudragit®-FS30D NPs, agomelatine/ Eudragit-FS30D/PVP-TA NPs, and dexamethasone (Dex., 1 mg/kg/d). Twenty-four hours after the last administration, colonic tissue was analyzed for macroscopic and histopathological evaluations, along with quantification of malondialdehyde (MDA) and myeloperoxidase (MPO) levels. The results showed that the PVP-TA NPs alone was not suitable regarding to release profile and particle size distribution. However, Eudragit-FS30D NPs alone and Eudragit-FS30D + PVP-TA NPs passed physicochemical evaluations and were both effective in reducing the symptoms and indices of experimental colitis. Taken together, targeted NPs of agomelatine are potentially effective in treatment of ulcerative colitis.

阿戈美拉汀纳米颗粒结肠递送治疗TNBS诱导的溃疡性结肠炎。
阿戈美拉汀是一种非典型的抗抑郁药,半衰期长,作用机制与褪黑素相似。阿戈美拉汀是一种强抗氧化剂,其抗炎作用已在许多研究中报道。在三硝基苯磺酸(TNBS)诱导的实验性结肠炎模型中,本研究旨在评估靶向纳米颗粒(NPs)负载阿美拉汀的抗炎作用。聚(1-乙烯基吡咯烷酮)-接枝-(1-三孔内酯)(PVP-TA)和Eudragit®- fs30d聚合物分别作为时间、pH和时间/pH依赖的配方单独使用和组合使用。根据其颗粒大小、形态、释放方式等理化性质选择最佳配方。用0.5 ml TNBS诱导6组大鼠。设计的组为:正常组、未治疗组、阿戈美拉汀(25 mg/kg/d)、阿戈美拉汀/乌德拉吉特-FS30D NPs、阿戈美拉汀/乌德拉吉特-FS30D/PVP-TA NPs、地塞米松(Dex。, 1 mg/kg/d)。末次给药24小时后,分析结肠组织进行宏观和组织病理学评估,同时定量测定丙二醛(MDA)和髓过氧化物酶(MPO)水平。结果表明,单独使用PVP-TA NPs在释放剖面和粒径分布上并不合适。而Eudragit-FS30D NPs和Eudragit-FS30D + PVP-TA NPs均通过理化评价,均能有效减轻实验性结肠炎的症状和指标。综上所述,阿戈美拉汀的靶向NPs在治疗溃疡性结肠炎方面可能有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信