{"title":"Information Geometry and Manifold Learning: A Novel Framework for Analyzing Alzheimer's Disease MRI Data.","authors":"Ömer Akgüller, Mehmet Ali Balcı, Gabriela Cioca","doi":"10.3390/diagnostics15020153","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. <b>Methods</b>: We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment. Preprocessed images were reduced via Principal Component Analysis (retaining 95% variance) and converted into statistical manifolds using estimated mean vectors and covariance matrices. Geodesic distances, computed with the Fisher Information metric, quantified class differences. Graph Neural Networks, including Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE, were utilized to categorize impairment levels using graph-based representations of the MRI data. <b>Results</b>: Significant differences in covariance structures were observed, with increased variability and stronger feature correlations at higher impairment levels. Geodesic distances between No Impairment and Mild Impairment (58.68, p<0.001) and between Mild and Moderate Impairment (58.28, p<0.001) are statistically significant. GCN and GraphSAGE achieve perfect classification accuracy (precision, recall, F1-Score: 1.0), correctly identifying all instances across classes. GAT attains an overall accuracy of 59.61%, with variable performance across classes. <b>Conclusions</b>: Integrating information geometry, manifold learning, and GNNs effectively differentiates AD impairment stages from MRI data. The strong performance of GCN and GraphSAGE indicates their potential to assist clinicians in the early identification and tracking of Alzheimer's disease progression.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020153","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. Methods: We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment. Preprocessed images were reduced via Principal Component Analysis (retaining 95% variance) and converted into statistical manifolds using estimated mean vectors and covariance matrices. Geodesic distances, computed with the Fisher Information metric, quantified class differences. Graph Neural Networks, including Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE, were utilized to categorize impairment levels using graph-based representations of the MRI data. Results: Significant differences in covariance structures were observed, with increased variability and stronger feature correlations at higher impairment levels. Geodesic distances between No Impairment and Mild Impairment (58.68, p<0.001) and between Mild and Moderate Impairment (58.28, p<0.001) are statistically significant. GCN and GraphSAGE achieve perfect classification accuracy (precision, recall, F1-Score: 1.0), correctly identifying all instances across classes. GAT attains an overall accuracy of 59.61%, with variable performance across classes. Conclusions: Integrating information geometry, manifold learning, and GNNs effectively differentiates AD impairment stages from MRI data. The strong performance of GCN and GraphSAGE indicates their potential to assist clinicians in the early identification and tracking of Alzheimer's disease progression.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.