Information Geometry and Manifold Learning: A Novel Framework for Analyzing Alzheimer's Disease MRI Data.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Ömer Akgüller, Mehmet Ali Balcı, Gabriela Cioca
{"title":"Information Geometry and Manifold Learning: A Novel Framework for Analyzing Alzheimer's Disease MRI Data.","authors":"Ömer Akgüller, Mehmet Ali Balcı, Gabriela Cioca","doi":"10.3390/diagnostics15020153","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. <b>Methods</b>: We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment. Preprocessed images were reduced via Principal Component Analysis (retaining 95% variance) and converted into statistical manifolds using estimated mean vectors and covariance matrices. Geodesic distances, computed with the Fisher Information metric, quantified class differences. Graph Neural Networks, including Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE, were utilized to categorize impairment levels using graph-based representations of the MRI data. <b>Results</b>: Significant differences in covariance structures were observed, with increased variability and stronger feature correlations at higher impairment levels. Geodesic distances between No Impairment and Mild Impairment (58.68, p<0.001) and between Mild and Moderate Impairment (58.28, p<0.001) are statistically significant. GCN and GraphSAGE achieve perfect classification accuracy (precision, recall, F1-Score: 1.0), correctly identifying all instances across classes. GAT attains an overall accuracy of 59.61%, with variable performance across classes. <b>Conclusions</b>: Integrating information geometry, manifold learning, and GNNs effectively differentiates AD impairment stages from MRI data. The strong performance of GCN and GraphSAGE indicates their potential to assist clinicians in the early identification and tracking of Alzheimer's disease progression.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020153","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. Methods: We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment. Preprocessed images were reduced via Principal Component Analysis (retaining 95% variance) and converted into statistical manifolds using estimated mean vectors and covariance matrices. Geodesic distances, computed with the Fisher Information metric, quantified class differences. Graph Neural Networks, including Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE, were utilized to categorize impairment levels using graph-based representations of the MRI data. Results: Significant differences in covariance structures were observed, with increased variability and stronger feature correlations at higher impairment levels. Geodesic distances between No Impairment and Mild Impairment (58.68, p<0.001) and between Mild and Moderate Impairment (58.28, p<0.001) are statistically significant. GCN and GraphSAGE achieve perfect classification accuracy (precision, recall, F1-Score: 1.0), correctly identifying all instances across classes. GAT attains an overall accuracy of 59.61%, with variable performance across classes. Conclusions: Integrating information geometry, manifold learning, and GNNs effectively differentiates AD impairment stages from MRI data. The strong performance of GCN and GraphSAGE indicates their potential to assist clinicians in the early identification and tracking of Alzheimer's disease progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信