Rebeca Reis e Silva , Taynan Motta Portal , Nathany da Silva Nogueira , Thuany da Silva Nogueira , Andressa de Abreu Mello , Cintia Monteiro-de-Barros
{"title":"Paraquat neurotoxicity: Oxidative stress and neuronal dysfunction in the ascidian brain","authors":"Rebeca Reis e Silva , Taynan Motta Portal , Nathany da Silva Nogueira , Thuany da Silva Nogueira , Andressa de Abreu Mello , Cintia Monteiro-de-Barros","doi":"10.1016/j.cbpc.2025.110128","DOIUrl":null,"url":null,"abstract":"<div><div>Paraquat (PQ) is a widely used herbicide; however, it has been linked to various diseases, including an increased risk of developing Parkinsonism. To study this, invertebrates such as ascidians have been used. They have a simple nervous system and are considered an emerging model for the study of neurodegenerative diseases. Here, we investigated the effects of PQ in the brain of the ascidian <em>Styela plicata</em>. We performed behavioral tests, assessed morphology, and monitored oxidative stress and the expression of tyrosine hydroxylase (TH) and caspase-3 (Casp 3) using immunofluorescence. In the presence of PQ, siphon movement was reduced and cortical thickness was increased. In addition, an observed increase in ROS was detected, along with attenuated SOD and CAT activities and increased LPO production. Interestingly, PQ downregulated the expression of TH and upregulated that of Casp 3. We conclude that PQ-induced oxidative stress leads to the death of catecholaminergic neurons in the <em>S. plicata</em> brain.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"290 ","pages":"Article 110128"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625000092","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Paraquat (PQ) is a widely used herbicide; however, it has been linked to various diseases, including an increased risk of developing Parkinsonism. To study this, invertebrates such as ascidians have been used. They have a simple nervous system and are considered an emerging model for the study of neurodegenerative diseases. Here, we investigated the effects of PQ in the brain of the ascidian Styela plicata. We performed behavioral tests, assessed morphology, and monitored oxidative stress and the expression of tyrosine hydroxylase (TH) and caspase-3 (Casp 3) using immunofluorescence. In the presence of PQ, siphon movement was reduced and cortical thickness was increased. In addition, an observed increase in ROS was detected, along with attenuated SOD and CAT activities and increased LPO production. Interestingly, PQ downregulated the expression of TH and upregulated that of Casp 3. We conclude that PQ-induced oxidative stress leads to the death of catecholaminergic neurons in the S. plicata brain.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.