A phylogenetic epidemiology approach to predicting the establishment of multi-host plant pests.

IF 5.2 1区 生物学 Q1 BIOLOGY
Shannon Colleen Lynch, Edeli Reyes-Gonzalez, Emily L Bossard, Karen S Alarcon, Natalie L R Love, Allan D Hollander, Beatriz E Nobua-Behrmann, Gregory S Gilbert
{"title":"A phylogenetic epidemiology approach to predicting the establishment of multi-host plant pests.","authors":"Shannon Colleen Lynch, Edeli Reyes-Gonzalez, Emily L Bossard, Karen S Alarcon, Natalie L R Love, Allan D Hollander, Beatriz E Nobua-Behrmann, Gregory S Gilbert","doi":"10.1038/s42003-025-07540-y","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting emergent pest spread is paramount to mitigating their impacts. For host-specialized pests, epidemiological models of spread through a single host population are well developed. However, most pests attack multiple host species; the challenge is predicting which communities are most vulnerable to infestation. Here, we develop a phylogenetically-informed approach to predict establishment of emergent multi-host pests across heterogeneous landscapes. We model a beetle-pathogen symbiotic complex on trees, introduced from Southeast Asia to California. The phyloEpi model for likelihood of establishment was predicted from the phylogenetic composition of woody species in the invaded community and the influence of temperature on beetle reproduction. Plant communities dominated by close relatives of known epidemiologically critical hosts were four times more likely to become infested than communities with more distantly related species. Where microclimate favored beetle reproduction, pest establishment was greater than expected based only on species composition. We applied this phyloEpi model to predict infestation risk in California using weather data and complete tree inventories from 9262 1-km<sup>2</sup> grids in 170 cities. Regions in the state predicted with low likelihood of infestation were confirmed by independent monitoring. Analysts can adapt these phylogenetic ecology tools to predict spread of any multi-host pest in novel habitats.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"117"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07540-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting emergent pest spread is paramount to mitigating their impacts. For host-specialized pests, epidemiological models of spread through a single host population are well developed. However, most pests attack multiple host species; the challenge is predicting which communities are most vulnerable to infestation. Here, we develop a phylogenetically-informed approach to predict establishment of emergent multi-host pests across heterogeneous landscapes. We model a beetle-pathogen symbiotic complex on trees, introduced from Southeast Asia to California. The phyloEpi model for likelihood of establishment was predicted from the phylogenetic composition of woody species in the invaded community and the influence of temperature on beetle reproduction. Plant communities dominated by close relatives of known epidemiologically critical hosts were four times more likely to become infested than communities with more distantly related species. Where microclimate favored beetle reproduction, pest establishment was greater than expected based only on species composition. We applied this phyloEpi model to predict infestation risk in California using weather data and complete tree inventories from 9262 1-km2 grids in 170 cities. Regions in the state predicted with low likelihood of infestation were confirmed by independent monitoring. Analysts can adapt these phylogenetic ecology tools to predict spread of any multi-host pest in novel habitats.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信