Causal Estimands for Analyses of Averted and Avertible Outcomes due to Infectious Disease Interventions.

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Katherine M Jia, Christopher B Boyer, Jacco Wallinga, Marc Lipsitch
{"title":"Causal Estimands for Analyses of Averted and Avertible Outcomes due to Infectious Disease Interventions.","authors":"Katherine M Jia, Christopher B Boyer, Jacco Wallinga, Marc Lipsitch","doi":"10.1097/EDE.0000000000001839","DOIUrl":null,"url":null,"abstract":"<p><p>During the coronavirus disease (COVID-19) pandemic, researchers attempted to estimate the number of averted and avertible outcomes due to vaccination campaigns to quantify public health impact. However, the estimands used in these analyses have not been previously formalized. It is also unclear how these analyses relate to the broader framework of direct, indirect, total, and overall causal effects under interference. Here, using potential outcome notation, we adjust the direct and overall effects to accommodate analyses of averted and avertible outcomes. We use this framework to interrogate the commonly held assumption that vaccine-averted outcomes via direct impact among vaccinated individuals (or vaccine-avertible outcomes via direct impact among unvaccinated individuals) is a lower bound on vaccine-averted (or -avertible) outcomes overall. To do so, we describe a susceptible-infected-recovered-death model stratified by vaccination status. When vaccine efficacies wane, the lower bound fails for vaccine-avertible outcomes. When transmission or fatality parameters increase over time, the lower bound fails for both vaccine-averted and -avertible outcomes. Only in the simplest scenario where vaccine efficacies, transmission, and fatality parameters are constant over time, outcomes averted via direct impact among vaccinated individuals (or outcomes avertible via direct impact among unvaccinated individuals) is a lower bound on overall impact. In conclusion, the lower bound can fail under common violations to assumptions on time-invariant vaccine efficacy, pathogen properties, or behavioral parameters. In real data analyses, estimating what seems like a lower bound on overall impact through estimating direct impact may be inadvisable without examining the directions of indirect effects.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001839","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

During the coronavirus disease (COVID-19) pandemic, researchers attempted to estimate the number of averted and avertible outcomes due to vaccination campaigns to quantify public health impact. However, the estimands used in these analyses have not been previously formalized. It is also unclear how these analyses relate to the broader framework of direct, indirect, total, and overall causal effects under interference. Here, using potential outcome notation, we adjust the direct and overall effects to accommodate analyses of averted and avertible outcomes. We use this framework to interrogate the commonly held assumption that vaccine-averted outcomes via direct impact among vaccinated individuals (or vaccine-avertible outcomes via direct impact among unvaccinated individuals) is a lower bound on vaccine-averted (or -avertible) outcomes overall. To do so, we describe a susceptible-infected-recovered-death model stratified by vaccination status. When vaccine efficacies wane, the lower bound fails for vaccine-avertible outcomes. When transmission or fatality parameters increase over time, the lower bound fails for both vaccine-averted and -avertible outcomes. Only in the simplest scenario where vaccine efficacies, transmission, and fatality parameters are constant over time, outcomes averted via direct impact among vaccinated individuals (or outcomes avertible via direct impact among unvaccinated individuals) is a lower bound on overall impact. In conclusion, the lower bound can fail under common violations to assumptions on time-invariant vaccine efficacy, pathogen properties, or behavioral parameters. In real data analyses, estimating what seems like a lower bound on overall impact through estimating direct impact may be inadvisable without examining the directions of indirect effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信