Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation.
Amani Ben Khalifa, Manel Mili, Mezri Maatouk, Asma Ben Abdallah, Mabrouk Abdellali, Sofiene Gaied, Azza Ben Ali, Yassir Lahouel, Mohamed Hedi Bedoui, Ahmed Zrig
{"title":"Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation.","authors":"Amani Ben Khalifa, Manel Mili, Mezri Maatouk, Asma Ben Abdallah, Mabrouk Abdellali, Sofiene Gaied, Azza Ben Ali, Yassir Lahouel, Mohamed Hedi Bedoui, Ahmed Zrig","doi":"10.3390/diagnostics15020207","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. <b>Methods:</b> This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images. Fine-tuned VGG16 was performed for feature extraction. A spatial attention mechanism was implemented as a part of the neural network architecture. The MLP architecture was used for the classification. The evaluation metrics were calculated using a separate test set. To compare the VGG16 model's performance in feature extraction, various pre-trained base models were evaluated: VGG19, DenseNet121, DenseNet201, MobileNet, InceptionV3, and InceptionResNetV2. The Support Vector Machine (SVM) classifier was evaluated and compared to MLP for the classification task. The performance of the VGG16-MLP model was compared with a subjective visual analysis conducted by two blinded independent readers. <b>Results:</b> The VGG16-MLP model allowed high-performance differentiation between MI, myocarditis, and healthy LGE cardiac MRI images. It outperformed the other tested models with 96% accuracy, 97% precision, 96% sensitivity, and 96% F1-score. Our model surpassed the accuracy of Reader 1 by 27% and Reader 2 by 17%. <b>Conclusions:</b> Our study demonstrated that the VGG16-MLP model permits accurate classification of MI, myocarditis, and healthy LGE cardiac MRI images and could be considered a reliable computer-aided diagnosis approach specifically for radiologists with limited experience in cardiovascular imaging.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. Methods: This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images. Fine-tuned VGG16 was performed for feature extraction. A spatial attention mechanism was implemented as a part of the neural network architecture. The MLP architecture was used for the classification. The evaluation metrics were calculated using a separate test set. To compare the VGG16 model's performance in feature extraction, various pre-trained base models were evaluated: VGG19, DenseNet121, DenseNet201, MobileNet, InceptionV3, and InceptionResNetV2. The Support Vector Machine (SVM) classifier was evaluated and compared to MLP for the classification task. The performance of the VGG16-MLP model was compared with a subjective visual analysis conducted by two blinded independent readers. Results: The VGG16-MLP model allowed high-performance differentiation between MI, myocarditis, and healthy LGE cardiac MRI images. It outperformed the other tested models with 96% accuracy, 97% precision, 96% sensitivity, and 96% F1-score. Our model surpassed the accuracy of Reader 1 by 27% and Reader 2 by 17%. Conclusions: Our study demonstrated that the VGG16-MLP model permits accurate classification of MI, myocarditis, and healthy LGE cardiac MRI images and could be considered a reliable computer-aided diagnosis approach specifically for radiologists with limited experience in cardiovascular imaging.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.