{"title":"Decomposition of a complex motor skill with precise error feedback and intensive training breaks expertise ceiling.","authors":"Yudai Kimoto, Masato Hirano, Shinichi Furuya","doi":"10.1038/s42003-025-07562-6","DOIUrl":null,"url":null,"abstract":"<p><p>Complex motor skills involve intricate sequences of movements that require precise temporal coordination across multiple body parts, posing challenges to mastery based on perceived error or reward. One approach that has been widely used is to decompose such skills into simpler, constituent movement elements during the learning process, thereby aligning the task complexity with the learners' capacity for accurate execution. Despite common belief and prevalent adoption, the effectiveness of this method remains elusive. Here we addressed this issue by decomposing a sequence of precisely timed coordination of movements across multiple fingers into individual constituent elements separately during piano practice. The results demonstrated that the decomposition training enhanced the accuracy of the original motor skill, a benefit not achieved through mere repetition of movements alone, specifically when skilled pianists received explicit visual feedback on timing error in the order of milliseconds during training. During the training, the patterns of multi-finger movements changed significantly, suggesting exploration of movements to refine the skill. By contrast, neither unskilled pianists who underwent the same training nor skilled pianists who performed the decomposition training without receiving visual feedback on the error showed improved skill through training. These findings offer novel evidences suggesting that decomposing a complex motor skill, coupled with receiving feedback on subtle movement error during training, further enhances motor expertise of skilled individuals by facilitating exploratory refinement of movements.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"118"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07562-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Complex motor skills involve intricate sequences of movements that require precise temporal coordination across multiple body parts, posing challenges to mastery based on perceived error or reward. One approach that has been widely used is to decompose such skills into simpler, constituent movement elements during the learning process, thereby aligning the task complexity with the learners' capacity for accurate execution. Despite common belief and prevalent adoption, the effectiveness of this method remains elusive. Here we addressed this issue by decomposing a sequence of precisely timed coordination of movements across multiple fingers into individual constituent elements separately during piano practice. The results demonstrated that the decomposition training enhanced the accuracy of the original motor skill, a benefit not achieved through mere repetition of movements alone, specifically when skilled pianists received explicit visual feedback on timing error in the order of milliseconds during training. During the training, the patterns of multi-finger movements changed significantly, suggesting exploration of movements to refine the skill. By contrast, neither unskilled pianists who underwent the same training nor skilled pianists who performed the decomposition training without receiving visual feedback on the error showed improved skill through training. These findings offer novel evidences suggesting that decomposing a complex motor skill, coupled with receiving feedback on subtle movement error during training, further enhances motor expertise of skilled individuals by facilitating exploratory refinement of movements.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.