A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner.
{"title":"A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner.","authors":"Junchae Lee, Jinny Lee, Bong-Il Song","doi":"10.3390/cancers17020331","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs.</p><p><strong>Methods: </strong>A total of 152 patient cases were retrospectively analyzed and split into training and validation sets (7:3) using stratification and randomization.</p><p><strong>Results: </strong>The least absolute shrinkage and selection operator (LASSO) algorithm identified nine radiomics features from 960 candidates to construct a radiomics signature predictive of malignancy. Performance of the radiomics score was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC). In the training set, the radiomics score achieved an AUC of 0.794 (95% CI: 0.703-0.885, <i>p</i> < 0.001). Validation was performed on internal and external datasets, yielding AUCs of 0.702 (95% CI: 0.547-0.858, <i>p</i> = 0.011) and 0.668 (95% CI: 0.500-0.838, <i>p</i> = 0.043), respectively.</p><p><strong>Conclusions: </strong>These results demonstrate that the selected nine radiomics features effectively differentiate malignant thyroid nodules. Overall, the radiomics model shows potential as a valuable predictive tool for thyroid cancer in patients with TIs, supporting improved preoperative decision-making.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17020331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs.
Methods: A total of 152 patient cases were retrospectively analyzed and split into training and validation sets (7:3) using stratification and randomization.
Results: The least absolute shrinkage and selection operator (LASSO) algorithm identified nine radiomics features from 960 candidates to construct a radiomics signature predictive of malignancy. Performance of the radiomics score was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC). In the training set, the radiomics score achieved an AUC of 0.794 (95% CI: 0.703-0.885, p < 0.001). Validation was performed on internal and external datasets, yielding AUCs of 0.702 (95% CI: 0.547-0.858, p = 0.011) and 0.668 (95% CI: 0.500-0.838, p = 0.043), respectively.
Conclusions: These results demonstrate that the selected nine radiomics features effectively differentiate malignant thyroid nodules. Overall, the radiomics model shows potential as a valuable predictive tool for thyroid cancer in patients with TIs, supporting improved preoperative decision-making.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.