A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner.

IF 4.5 2区 医学 Q1 ONCOLOGY
Cancers Pub Date : 2025-01-20 DOI:10.3390/cancers17020331
Junchae Lee, Jinny Lee, Bong-Il Song
{"title":"A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner.","authors":"Junchae Lee, Jinny Lee, Bong-Il Song","doi":"10.3390/cancers17020331","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs.</p><p><strong>Methods: </strong>A total of 152 patient cases were retrospectively analyzed and split into training and validation sets (7:3) using stratification and randomization.</p><p><strong>Results: </strong>The least absolute shrinkage and selection operator (LASSO) algorithm identified nine radiomics features from 960 candidates to construct a radiomics signature predictive of malignancy. Performance of the radiomics score was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC). In the training set, the radiomics score achieved an AUC of 0.794 (95% CI: 0.703-0.885, <i>p</i> < 0.001). Validation was performed on internal and external datasets, yielding AUCs of 0.702 (95% CI: 0.547-0.858, <i>p</i> = 0.011) and 0.668 (95% CI: 0.500-0.838, <i>p</i> = 0.043), respectively.</p><p><strong>Conclusions: </strong>These results demonstrate that the selected nine radiomics features effectively differentiate malignant thyroid nodules. Overall, the radiomics model shows potential as a valuable predictive tool for thyroid cancer in patients with TIs, supporting improved preoperative decision-making.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17020331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs.

Methods: A total of 152 patient cases were retrospectively analyzed and split into training and validation sets (7:3) using stratification and randomization.

Results: The least absolute shrinkage and selection operator (LASSO) algorithm identified nine radiomics features from 960 candidates to construct a radiomics signature predictive of malignancy. Performance of the radiomics score was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC). In the training set, the radiomics score achieved an AUC of 0.794 (95% CI: 0.703-0.885, p < 0.001). Validation was performed on internal and external datasets, yielding AUCs of 0.702 (95% CI: 0.547-0.858, p = 0.011) and 0.668 (95% CI: 0.500-0.838, p = 0.043), respectively.

Conclusions: These results demonstrate that the selected nine radiomics features effectively differentiate malignant thyroid nodules. Overall, the radiomics model shows potential as a valuable predictive tool for thyroid cancer in patients with TIs, supporting improved preoperative decision-making.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信