Knowledge-point classification using simple LSTM-based and siamese-based networks for virtual patient simulation.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Yih-Lon Lin, Yu-Min Chiang, Tsuen-Chiuan Tsai, Sheng-Gui Su
{"title":"Knowledge-point classification using simple LSTM-based and siamese-based networks for virtual patient simulation.","authors":"Yih-Lon Lin, Yu-Min Chiang, Tsuen-Chiuan Tsai, Sheng-Gui Su","doi":"10.1186/s12911-025-02866-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In medical education, enhancing thinking skills is vital. The Virtual Diagnosis and Treatment Platform (VP) refines medical students' diagnostic abilities through interactive patient interviews (simulated patient interactions). By analyzing the questions asked during these interviews, the VP evaluates students' aptitude in medical history inquiries, offering insights into their thinking capabilities. This study aimed to extract insights from case summaries and patient interviews to improve evaluation and feedback in medical education.</p><p><strong>Methods: </strong>This study employs a systematic approach to knowledge-point classification by utilizing both simple long short-term memory (LSTM)-based and Siamese-based networks, coupled with cross-validation techniques. The dataset under scrutiny originates from the \"Clinical Diagnosis and Treatment Skills Competitions\" spanning the first to third years in Taiwan. The methodology involves generating knowledge points from sequential questions posed during case summaries and patient interviews. These knowledge points are then subjected to classification using the designated neural network architectures.</p><p><strong>Results: </strong>The experimental findings reveal promising outcomes, particularly when the Siamese-based network is used for knowledge-point classification. Through repeated (stratified) 10-fold cross validation, the accuracies achieved consistently exceeded 93%, with a standard deviation less than 0.007. These results underscore the efficacy of the proposed methodologies in enhancing virtual clinical diagnosis systems.</p><p><strong>Conclusions: </strong>This study underscores the viability of leveraging advanced neural network architectures, particularly the Siamese-based network, for knowledge-point classification within virtual clinical diagnosis systems. By effectively discerning and classifying knowledge points derived from case summaries and patient interviews, these systems offer invaluable insights into students' thinking capabilities in medical education. The robust accuracies attained through cross-validation affirm the feasibility and efficacy of the proposed methodologies, thus paving the way for enhanced virtual clinical training platforms.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"39"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02866-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In medical education, enhancing thinking skills is vital. The Virtual Diagnosis and Treatment Platform (VP) refines medical students' diagnostic abilities through interactive patient interviews (simulated patient interactions). By analyzing the questions asked during these interviews, the VP evaluates students' aptitude in medical history inquiries, offering insights into their thinking capabilities. This study aimed to extract insights from case summaries and patient interviews to improve evaluation and feedback in medical education.

Methods: This study employs a systematic approach to knowledge-point classification by utilizing both simple long short-term memory (LSTM)-based and Siamese-based networks, coupled with cross-validation techniques. The dataset under scrutiny originates from the "Clinical Diagnosis and Treatment Skills Competitions" spanning the first to third years in Taiwan. The methodology involves generating knowledge points from sequential questions posed during case summaries and patient interviews. These knowledge points are then subjected to classification using the designated neural network architectures.

Results: The experimental findings reveal promising outcomes, particularly when the Siamese-based network is used for knowledge-point classification. Through repeated (stratified) 10-fold cross validation, the accuracies achieved consistently exceeded 93%, with a standard deviation less than 0.007. These results underscore the efficacy of the proposed methodologies in enhancing virtual clinical diagnosis systems.

Conclusions: This study underscores the viability of leveraging advanced neural network architectures, particularly the Siamese-based network, for knowledge-point classification within virtual clinical diagnosis systems. By effectively discerning and classifying knowledge points derived from case summaries and patient interviews, these systems offer invaluable insights into students' thinking capabilities in medical education. The robust accuracies attained through cross-validation affirm the feasibility and efficacy of the proposed methodologies, thus paving the way for enhanced virtual clinical training platforms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信