An Efficient 3D Convolutional Neural Network for Dose Prediction in Cancer Radiotherapy from CT Images.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Lam Thanh Hien, Pham Trung Hieu, Do Nang Toan
{"title":"An Efficient 3D Convolutional Neural Network for Dose Prediction in Cancer Radiotherapy from CT Images.","authors":"Lam Thanh Hien, Pham Trung Hieu, Do Nang Toan","doi":"10.3390/diagnostics15020177","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction</b>: Cancer is a highly lethal disease with a significantly high mortality rate. One of the most commonly used methods for treatment is radiation therapy. However, cancer treatment using radiotherapy is a time-consuming process that requires significant manual work from planners and doctors. In radiation therapy treatment planning, determining the dose distribution for each of the regions of the patient's body is one of the most difficult and important tasks. Nowadays, artificial intelligence has shown promising results in improving the quality of disease treatment, particularly in cancer radiation therapy. <b>Objectives</b>: The main objective of this study is to build a high-performance deep learning model for predicting radiation therapy doses for cancer and to develop software to easily manipulate and use this model. <b>Materials and Methods</b>: In this paper, we propose a custom 3D convolutional neural network model with a U-Net-based architecture to automatically predict radiation doses during cancer radiation therapy from CT images. To ensure that the predicted doses do not have negative values, which are not valid for radiation doses, a rectified linear unit (ReLU) function is applied to the output to convert negative values to zero. Additionally, a proposed loss function based on a dose-volume histogram is used to train the model, ensuring that the predicted dose concentrations are highly meaningful in terms of radiation therapy. The model is developed using the OpenKBP challenge dataset, which consists of 200, 100, and 40 head and neck cancer patients for training, testing, and validation, respectively. Before the training phase, preprocessing and augmentation techniques, such as standardization, translation, and flipping, are applied to the training set. During the training phase, a cosine annealing scheduler is applied to update the learning rate. <b>Results and Conclusions</b>: Our model achieved strong performance, with a good DVH score (1.444 Gy) on the test dataset, compared to previous studies and state-of-the-art models. In addition, we developed software to display the dose maps predicted by the proposed model for each 2D slice in order to facilitate usage and observation. These results may help doctors in treating cancer with radiation therapy in terms of both time and effectiveness.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020177","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cancer is a highly lethal disease with a significantly high mortality rate. One of the most commonly used methods for treatment is radiation therapy. However, cancer treatment using radiotherapy is a time-consuming process that requires significant manual work from planners and doctors. In radiation therapy treatment planning, determining the dose distribution for each of the regions of the patient's body is one of the most difficult and important tasks. Nowadays, artificial intelligence has shown promising results in improving the quality of disease treatment, particularly in cancer radiation therapy. Objectives: The main objective of this study is to build a high-performance deep learning model for predicting radiation therapy doses for cancer and to develop software to easily manipulate and use this model. Materials and Methods: In this paper, we propose a custom 3D convolutional neural network model with a U-Net-based architecture to automatically predict radiation doses during cancer radiation therapy from CT images. To ensure that the predicted doses do not have negative values, which are not valid for radiation doses, a rectified linear unit (ReLU) function is applied to the output to convert negative values to zero. Additionally, a proposed loss function based on a dose-volume histogram is used to train the model, ensuring that the predicted dose concentrations are highly meaningful in terms of radiation therapy. The model is developed using the OpenKBP challenge dataset, which consists of 200, 100, and 40 head and neck cancer patients for training, testing, and validation, respectively. Before the training phase, preprocessing and augmentation techniques, such as standardization, translation, and flipping, are applied to the training set. During the training phase, a cosine annealing scheduler is applied to update the learning rate. Results and Conclusions: Our model achieved strong performance, with a good DVH score (1.444 Gy) on the test dataset, compared to previous studies and state-of-the-art models. In addition, we developed software to display the dose maps predicted by the proposed model for each 2D slice in order to facilitate usage and observation. These results may help doctors in treating cancer with radiation therapy in terms of both time and effectiveness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信