Fluoride-induced testicular and ovarian toxicity: evidence from animal studies.

IF 4.3 2区 生物学 Q1 BIOLOGY
Seyedeh Fahimeh Talebi, Mohammad Seify, Ramji Kumar Bhandari, Hamed Shoorei, Shahram Dabiri Oskuei
{"title":"Fluoride-induced testicular and ovarian toxicity: evidence from animal studies.","authors":"Seyedeh Fahimeh Talebi, Mohammad Seify, Ramji Kumar Bhandari, Hamed Shoorei, Shahram Dabiri Oskuei","doi":"10.1186/s40659-025-00586-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury. In males, F exposure at different doses has been associated with reduced testis weight, reduced sperm quality in terms of count, motility, and viability, as well as abnormal sperm morphology and disruption of seminiferous tubules by altering hormone levels (especially testosterone), impairing spermatogenesis, and inducing oxidative stress and zinc deficiency. Similarly, administration of F can impact female reproductive health by affecting ovarian function, hormone levels, oocyte quality, and the regularity of the estrous cycle. However, the impact of F exposure on LH, FSH, and GnRH levels is controversial between males and females. In both males and females, F exerts its adverse effects by triggering apoptosis, autophagy, inflammation, mitochondrial dysfunction, reduction in ATP synthesis, and modulation of important genes involved in steroidogenesis. Furthermore, genetic susceptibility and individual variations in F metabolism may contribute to different responses to fluoride exposure.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"6"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00586-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury. In males, F exposure at different doses has been associated with reduced testis weight, reduced sperm quality in terms of count, motility, and viability, as well as abnormal sperm morphology and disruption of seminiferous tubules by altering hormone levels (especially testosterone), impairing spermatogenesis, and inducing oxidative stress and zinc deficiency. Similarly, administration of F can impact female reproductive health by affecting ovarian function, hormone levels, oocyte quality, and the regularity of the estrous cycle. However, the impact of F exposure on LH, FSH, and GnRH levels is controversial between males and females. In both males and females, F exerts its adverse effects by triggering apoptosis, autophagy, inflammation, mitochondrial dysfunction, reduction in ATP synthesis, and modulation of important genes involved in steroidogenesis. Furthermore, genetic susceptibility and individual variations in F metabolism may contribute to different responses to fluoride exposure.

氟化物引起的睾丸和卵巢毒性:来自动物研究的证据。
氟化物作为一种存在于水和某些食物等广泛来源中的天然元素,已被证明对预防龋齿有益,但也有人担心其对整体健康的潜在有害影响。氟化钠(NaF)是氟的另一种形式,能够在生殖器官中积累,干扰激素调节和氧化应激途径,导致生殖毒性。虽然f诱导生殖毒性的确切机制尚不完全清楚,但本文旨在阐明睾丸和卵巢损伤的机制。在男性中,不同剂量的F暴露与睾丸重量减少、精子数量、活力和活力方面的精子质量下降、精子形态异常和精小管破坏(通过改变激素水平(尤其是睾酮)、损害精子发生、诱导氧化应激和锌缺乏)有关。同样,服用F可以通过影响卵巢功能、激素水平、卵母细胞质量和发情周期规律来影响女性生殖健康。然而,F暴露对LH、FSH和GnRH水平的影响在男性和女性之间存在争议。在男性和女性中,F通过触发细胞凋亡、自噬、炎症、线粒体功能障碍、ATP合成减少和参与类固醇生成的重要基因的调节来发挥其不良影响。此外,遗传易感性和F代谢的个体差异可能导致氟暴露的不同反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信