Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Epileptic Cognitive Impairment.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-01-17 DOI:10.3390/biom15010142
Wen Li, Huimin Zhou, Xiaona Li, Gengyao Hu, Dong Wei
{"title":"Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Epileptic Cognitive Impairment.","authors":"Wen Li, Huimin Zhou, Xiaona Li, Gengyao Hu, Dong Wei","doi":"10.3390/biom15010142","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice. Behavioral assessments were conducted using the Morris water maze (MWM). Western blotting and immunofluorescence were applied to evaluate ASIC1a and <i>Gfap</i> expression while analyzing intracellular calcium and extracellular glutamate (Glu) concentrations in primary cultured astrocytes isolated from the brains of 1 to 3-day-old mice and treated LPS. Results showed enhanced astrocyte proliferation and ASIC1a expression in the dentate gyrus of epileptic mice 7, 21, and 28 days post-SE (all <i>p</i> < 0.05). Escape latency in the MWM further suggested that ASIC1a regulates cognitive function in mice with chronic epilepsy. LPS stimulation in vitro mimicked inflammatory responses, increasing ASIC1a after 24 h, which increased the concentration of intracellular calcium and extracellular expression of Glu; inhibition of ASIC1a expression reversed this process. To sum up, these data confirm that astrocytic ASIC1a may facilitate cognitive dysfunction post-epilepsy, presenting a potential therapeutic target.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010142","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice. Behavioral assessments were conducted using the Morris water maze (MWM). Western blotting and immunofluorescence were applied to evaluate ASIC1a and Gfap expression while analyzing intracellular calcium and extracellular glutamate (Glu) concentrations in primary cultured astrocytes isolated from the brains of 1 to 3-day-old mice and treated LPS. Results showed enhanced astrocyte proliferation and ASIC1a expression in the dentate gyrus of epileptic mice 7, 21, and 28 days post-SE (all p < 0.05). Escape latency in the MWM further suggested that ASIC1a regulates cognitive function in mice with chronic epilepsy. LPS stimulation in vitro mimicked inflammatory responses, increasing ASIC1a after 24 h, which increased the concentration of intracellular calcium and extracellular expression of Glu; inhibition of ASIC1a expression reversed this process. To sum up, these data confirm that astrocytic ASIC1a may facilitate cognitive dysfunction post-epilepsy, presenting a potential therapeutic target.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信