Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-01-18 DOI:10.3390/biom15010144
Ilenia De Leo, Nicola Mosca, Mariaceleste Pezzullo, Danila Valletta, Francesco Manfrevola, Vincenza Grazia Mele, Rosanna Chianese, Aniello Russo, Nicoletta Potenza
{"title":"Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells.","authors":"Ilenia De Leo, Nicola Mosca, Mariaceleste Pezzullo, Danila Valletta, Francesco Manfrevola, Vincenza Grazia Mele, Rosanna Chianese, Aniello Russo, Nicoletta Potenza","doi":"10.3390/biom15010144","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is among the most aggressive and lethal human tumors. Many functional studies have demonstrated the role of non-coding RNAs (ncRNA), particularly microRNAs (miRNA), in the regulation of hepatocarcinogenesis driving pathways. MiR-125a-5p (miR-125a) has been consistently reported as an oncosuppressive miRNA, as demonstrated in vivo and in vitro. However, its HCC relevant targets and molecular mechanisms are still largely unknown. Here, a genome-wide perspective of the whole miR-125a targetome has been achieved. In particular, two different HCC cell lines were subjected to a miRNA boosting by mimic transfections, and consequently many genes were de-regulated, as observed by a transcriptomic approach. The merging of down-regulated genes with results from bioinformatic predictive tools yielded a number of candidate direct targets that were further experimentally validated by luciferase-based reporter assays. Different novel targets were found, in particular ARID3A, CCNJ, LIPA, NR6A1, and NUP210, oncogenes in various tumors and here also related to HCC through miR-125a regulation. The RNA interactions investigated in this work could pave the way to piece together the RNA regulatory networks governed by the miRNA impacting on hepatocarcinogenesis, and be exploited in the future for identifying novel biomarkers and therapeutic targets in HCC.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010144","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is among the most aggressive and lethal human tumors. Many functional studies have demonstrated the role of non-coding RNAs (ncRNA), particularly microRNAs (miRNA), in the regulation of hepatocarcinogenesis driving pathways. MiR-125a-5p (miR-125a) has been consistently reported as an oncosuppressive miRNA, as demonstrated in vivo and in vitro. However, its HCC relevant targets and molecular mechanisms are still largely unknown. Here, a genome-wide perspective of the whole miR-125a targetome has been achieved. In particular, two different HCC cell lines were subjected to a miRNA boosting by mimic transfections, and consequently many genes were de-regulated, as observed by a transcriptomic approach. The merging of down-regulated genes with results from bioinformatic predictive tools yielded a number of candidate direct targets that were further experimentally validated by luciferase-based reporter assays. Different novel targets were found, in particular ARID3A, CCNJ, LIPA, NR6A1, and NUP210, oncogenes in various tumors and here also related to HCC through miR-125a regulation. The RNA interactions investigated in this work could pave the way to piece together the RNA regulatory networks governed by the miRNA impacting on hepatocarcinogenesis, and be exploited in the future for identifying novel biomarkers and therapeutic targets in HCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信