[Clinical application and three-dimensional finite element analysis of along-axis extraction method in mandibular mesial and horizontally impacted third molar surgery].
{"title":"[Clinical application and three-dimensional finite element analysis of along-axis extraction method in mandibular mesial and horizontally impacted third molar surgery].","authors":"Fei Wang, Xinyue Zhang, Muqing Liu, Enbo Wang, Denghui Duan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the clinical application effect of the along-axis extraction method in the extraction of impacted mandibular third molars (IMTM) and to compare the biomechanical characteristics of different root extraction techniques through three-dimensional finite element analysis.</p><p><strong>Methods: </strong>A total of 68 patients requiring IMTM extraction were enrolled and randomly divided into two groups: the experimental group underwent the along-axis extraction method, while the control group underwent the traditional buccal bone removal and root extraction method. The duration of the procedure, intraoperative and postoperative complications were recorded. Three-dimensional finite element analysis further revealed the stress distribution in the tooth root, jawbone, periodontal ligament, and mandibular canal during different root extraction methods.</p><p><strong>Results: </strong>The duration of root extraction, pain score and swelling on the first postoperative day in the control group were (7.87±3.90) min, 4.62±1.90 and (11.37±5.12) mm, respectively, which were significantly higher than those in the experimental group [(5.74±2.37) min, 3.87±1.19 and (7.22±3.39) mm, respectively]. The root fracture rate and lingual bone plate fracture rate in the control group were significantly higher than those in the experimental group (<i>P</i> < 0.05). The results of finite element analysis showed that the control group ' s lingual al-veolar bone had the higher peak equivalent stress, and lingual bone plate fracture was prone to occur. The periodontal ligament of the experimental group had the higher equivalent stress value, making it more likely to rip and more likely to cause root displacement. When subjected to force, the experimental group' s instantaneous root displacement was higher, but the control group ' s root displacement was more pronounced in the lingual direction.</p><p><strong>Conclusion: </strong>This study suggests that the along-axis extraction me-thod can not only effectively shorten the operative time but also reduce postoperative complications after extraction of impacted mandibular third molars, and enhance the safety of the operation and the patient' s comfort. Three-dimensional finite element analysis shows the biomechanical characteristics of various root extraction techniques visually, serves as a valuable guide for choosing and refining clinical surgical techniques, and confirms that extracting a tooth' s root along its long axis yields better clinical results.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"57 1","pages":"106-112"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the clinical application effect of the along-axis extraction method in the extraction of impacted mandibular third molars (IMTM) and to compare the biomechanical characteristics of different root extraction techniques through three-dimensional finite element analysis.
Methods: A total of 68 patients requiring IMTM extraction were enrolled and randomly divided into two groups: the experimental group underwent the along-axis extraction method, while the control group underwent the traditional buccal bone removal and root extraction method. The duration of the procedure, intraoperative and postoperative complications were recorded. Three-dimensional finite element analysis further revealed the stress distribution in the tooth root, jawbone, periodontal ligament, and mandibular canal during different root extraction methods.
Results: The duration of root extraction, pain score and swelling on the first postoperative day in the control group were (7.87±3.90) min, 4.62±1.90 and (11.37±5.12) mm, respectively, which were significantly higher than those in the experimental group [(5.74±2.37) min, 3.87±1.19 and (7.22±3.39) mm, respectively]. The root fracture rate and lingual bone plate fracture rate in the control group were significantly higher than those in the experimental group (P < 0.05). The results of finite element analysis showed that the control group ' s lingual al-veolar bone had the higher peak equivalent stress, and lingual bone plate fracture was prone to occur. The periodontal ligament of the experimental group had the higher equivalent stress value, making it more likely to rip and more likely to cause root displacement. When subjected to force, the experimental group' s instantaneous root displacement was higher, but the control group ' s root displacement was more pronounced in the lingual direction.
Conclusion: This study suggests that the along-axis extraction me-thod can not only effectively shorten the operative time but also reduce postoperative complications after extraction of impacted mandibular third molars, and enhance the safety of the operation and the patient' s comfort. Three-dimensional finite element analysis shows the biomechanical characteristics of various root extraction techniques visually, serves as a valuable guide for choosing and refining clinical surgical techniques, and confirms that extracting a tooth' s root along its long axis yields better clinical results.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.