Facile nucleophilic substitution approach for the spectrofluorimetric assay of natamycin based on diarylpyrrolone formation, evaluation of method greenness

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sayed M. Derayea, Fatma F. Mohammed
{"title":"Facile nucleophilic substitution approach for the spectrofluorimetric assay of natamycin based on diarylpyrrolone formation, evaluation of method greenness","authors":"Sayed M. Derayea,&nbsp;Fatma F. Mohammed","doi":"10.1186/s13065-025-01388-3","DOIUrl":null,"url":null,"abstract":"<div><p>An ecofriendly, effective, and selective spectrofluorimetric approach for natamycin analysis was developed using fluorescamine as a fluorogenic probe. Natamycin is the only topical ocular antifungal medication that is presently on the market for treating keratitis, conjunctivitis, and blepharitis caused by yeast and other fungi. Owing to its primary aliphatic amino group, natamycin can easily interact with fluorescamine resulting in the formation of the highly fluorescent diaryl pyrrolone derivative. The derivatization reaction was completed within very short time at room temperature in borate buffer solution (pH 7.6). The fluorescence intensity of the reaction product was monitored at 465 nm after exciting at 390 nm. The linearity range of the spectrofluorimetric method was 0.25–4.0 µg/mL of natamycin with limit of detection (LOD) of 0.082 µg/mL. The method was applied for the determination of the cited drug in pharmaceutical eye drops and artificial aqueous humor with high percentage recoveries and low relative standard deviations. In addition, the involved analytical procedure was green based on the results of the ecology scale scores.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01388-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An ecofriendly, effective, and selective spectrofluorimetric approach for natamycin analysis was developed using fluorescamine as a fluorogenic probe. Natamycin is the only topical ocular antifungal medication that is presently on the market for treating keratitis, conjunctivitis, and blepharitis caused by yeast and other fungi. Owing to its primary aliphatic amino group, natamycin can easily interact with fluorescamine resulting in the formation of the highly fluorescent diaryl pyrrolone derivative. The derivatization reaction was completed within very short time at room temperature in borate buffer solution (pH 7.6). The fluorescence intensity of the reaction product was monitored at 465 nm after exciting at 390 nm. The linearity range of the spectrofluorimetric method was 0.25–4.0 µg/mL of natamycin with limit of detection (LOD) of 0.082 µg/mL. The method was applied for the determination of the cited drug in pharmaceutical eye drops and artificial aqueous humor with high percentage recoveries and low relative standard deviations. In addition, the involved analytical procedure was green based on the results of the ecology scale scores.

基于二芳基吡咯酮生成的纳他霉素荧光测定的易亲核取代法及其绿色评价。
利用荧光胺作为荧光探针,建立了一种环保、有效、选择性的纳他霉素荧光分析方法。纳他霉素是目前市场上唯一一种局部眼部抗真菌药物,用于治疗由酵母和其他真菌引起的角膜炎、结膜炎和眼咽炎。由于它的初级脂肪族氨基,纳他霉素可以很容易地与荧光胺相互作用,从而形成高荧光的二芳基吡咯酮衍生物。在pH 7.6的硼酸盐缓冲溶液中,在很短的时间内完成了衍生化反应。390 nm激发后,在465 nm处监测反应产物的荧光强度。该方法的线性范围为0.25 ~ 4.0µg/mL,检出限为0.082µg/mL。该方法回收率高,相对标准偏差低,可用于药用滴眼液和人工房水中被引药物的测定。此外,根据生态量表得分的结果,所涉及的分析过程是绿色的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信