Advances in cyclotide research: bioactivity to cyclotide-based therapeutics.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Ankita Grover, Sawraj Singh, Sonal Sindhu, Amit Lath, Sanjay Kumar
{"title":"Advances in cyclotide research: bioactivity to cyclotide-based therapeutics.","authors":"Ankita Grover, Sawraj Singh, Sonal Sindhu, Amit Lath, Sanjay Kumar","doi":"10.1007/s11030-025-11113-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae. These native cyclotides exhibit several bioactivities, such as anti-bacterial, anti-HIV, anti-fungal, pesticidal, cytotoxic, and hemolytic activities which have immense significance in agriculture and therapeutics. The general mode of action of cyclotides is related to their structure, where their hydrophobic face penetrates the cell membrane and disrupts it to exhibit anti-microbial, cytotoxic, or hemolytic activities. Thus, the structure-activity relationship is of significance in cyclotides. Further, owing to their, small size, stability, and potential to interact and cross the membrane barrier of cells, they make promising choices for developing peptide-based biologics. However, challenges, such as production complexity, pharmacokinetic limitations, and off-target effects hinder their development. Advancements in cyclotide engineering, such as peptide grafting, ligand conjugation, and nanocarrier integration, heterologous production along with computational design optimization, can help overcome these challenges. Given the potential of these cyclic peptides, the present review focuses on the diversity, bioactivities, and structure-activity relationships of cyclotides, and advancements in cyclotides engineering emphasizing their unique attributes for diverse medical and biotechnological applications.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11113-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae. These native cyclotides exhibit several bioactivities, such as anti-bacterial, anti-HIV, anti-fungal, pesticidal, cytotoxic, and hemolytic activities which have immense significance in agriculture and therapeutics. The general mode of action of cyclotides is related to their structure, where their hydrophobic face penetrates the cell membrane and disrupts it to exhibit anti-microbial, cytotoxic, or hemolytic activities. Thus, the structure-activity relationship is of significance in cyclotides. Further, owing to their, small size, stability, and potential to interact and cross the membrane barrier of cells, they make promising choices for developing peptide-based biologics. However, challenges, such as production complexity, pharmacokinetic limitations, and off-target effects hinder their development. Advancements in cyclotide engineering, such as peptide grafting, ligand conjugation, and nanocarrier integration, heterologous production along with computational design optimization, can help overcome these challenges. Given the potential of these cyclic peptides, the present review focuses on the diversity, bioactivities, and structure-activity relationships of cyclotides, and advancements in cyclotides engineering emphasizing their unique attributes for diverse medical and biotechnological applications.

环肽研究进展:从生物活性到环肽疗法。
环肽是一类源自植物的环状肽,具有环胱氨酸结(CCK)基序的独特结构。它们是稳定的分子,在植物防御中自然发挥作用。迄今为止,在葫芦科、堇菜科、茜草科、茄科和豆科等不同植物类群中已报道了750多个环核苷酸。这些天然环聚糖具有多种生物活性,如抗菌、抗hiv、抗真菌、杀虫、细胞毒性和溶血活性,在农业和治疗学中具有重要意义。环聚糖的一般作用方式与它们的结构有关,它们的疏水性表面穿透细胞膜并破坏细胞膜以表现出抗微生物、细胞毒性或溶血活性。因此,结构-活性关系在环核苷酸中具有重要意义。此外,由于它们体积小,稳定性好,具有相互作用和跨越细胞膜屏障的潜力,它们为开发基于肽的生物制剂提供了有希望的选择。然而,诸如生产复杂性、药代动力学限制和脱靶效应等挑战阻碍了它们的发展。环肽工程的进步,如肽接枝、配体共轭、纳米载体整合、异种生产以及计算设计优化,可以帮助克服这些挑战。鉴于这些环肽的潜力,本文将重点介绍环肽的多样性、生物活性和构效关系,以及环肽工程的进展,强调其独特的属性在各种医学和生物技术方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信