Effects of naked neck and frizzle genes on growth and egg-laying performance of chickens in the tropics in an era of climate change.

IF 3 3区 地球科学 Q2 BIOPHYSICS
K Adomako, L Asamoah
{"title":"Effects of naked neck and frizzle genes on growth and egg-laying performance of chickens in the tropics in an era of climate change.","authors":"K Adomako, L Asamoah","doi":"10.1007/s00484-025-02853-3","DOIUrl":null,"url":null,"abstract":"<p><p>In regions characterized by tropical and subtropical climates, the elevated ambient temperatures exert adverse effects on both broiler and laying chickens, impacting their growth and egg production performance. To mitigate the challenges posed by heat stress, genetic strategies aimed at reducing feather coverage have gained prominence in hot climate areas. Among these approaches, the naked neck (Na) and frizzle (F) genes have emerged as particularly noteworthy. The Na and F genes play a pivotal role in facilitating heat dissipation and temperature regulation. By decreasing feather insulation, these genes enable efficient heat dissipation through exposed areas of the chickens' bodies. This reduction in feather coverage leads to elevated body surface temperature, which, in turn, enhances the capacity for heat loss and contributes to overall body temperature reduction. A substantial body of literature underscores the well-established positive impacts of the naked neck and frizzle genes on growth and egg-laying performance. As a result, these genes hold significant potential for integration into broiler and layer production systems, especially in regions characterized by high tropical temperatures. In the context of broiler farming under challenging heat conditions, the Na and F genes have demonstrated favorable effects on crucial parameters such as feed conversion ratio, body weight gain, disease resistance, and carcass attributes. Likewise, layers exposed to elevated temperatures exhibit enhanced egg production, eggshell quality, fertility, hatchability, and resistance to diseases when these genes are incorporated. Given that the prevalence of the naked neck and frizzle genes is primarily observed in indigenous chicken populations, it becomes imperative to prioritize measures for their conservation due to their exceptional performance in heat-stressed environments. To unlock the full genetic potential of exotic poultry reared in hot and humid conditions, the integration of the Na and F genes is a strongly recommended strategy.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-025-02853-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In regions characterized by tropical and subtropical climates, the elevated ambient temperatures exert adverse effects on both broiler and laying chickens, impacting their growth and egg production performance. To mitigate the challenges posed by heat stress, genetic strategies aimed at reducing feather coverage have gained prominence in hot climate areas. Among these approaches, the naked neck (Na) and frizzle (F) genes have emerged as particularly noteworthy. The Na and F genes play a pivotal role in facilitating heat dissipation and temperature regulation. By decreasing feather insulation, these genes enable efficient heat dissipation through exposed areas of the chickens' bodies. This reduction in feather coverage leads to elevated body surface temperature, which, in turn, enhances the capacity for heat loss and contributes to overall body temperature reduction. A substantial body of literature underscores the well-established positive impacts of the naked neck and frizzle genes on growth and egg-laying performance. As a result, these genes hold significant potential for integration into broiler and layer production systems, especially in regions characterized by high tropical temperatures. In the context of broiler farming under challenging heat conditions, the Na and F genes have demonstrated favorable effects on crucial parameters such as feed conversion ratio, body weight gain, disease resistance, and carcass attributes. Likewise, layers exposed to elevated temperatures exhibit enhanced egg production, eggshell quality, fertility, hatchability, and resistance to diseases when these genes are incorporated. Given that the prevalence of the naked neck and frizzle genes is primarily observed in indigenous chicken populations, it becomes imperative to prioritize measures for their conservation due to their exceptional performance in heat-stressed environments. To unlock the full genetic potential of exotic poultry reared in hot and humid conditions, the integration of the Na and F genes is a strongly recommended strategy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
9.40%
发文量
183
审稿时长
1 months
期刊介绍: The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment. Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health. The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信