MPEMDA: A multi-similarity integration approach with pre-completion and error correction for predicting microbe-drug associations

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yuxiang Li , Haochen Zhao , Jianxin Wang
{"title":"MPEMDA: A multi-similarity integration approach with pre-completion and error correction for predicting microbe-drug associations","authors":"Yuxiang Li ,&nbsp;Haochen Zhao ,&nbsp;Jianxin Wang","doi":"10.1016/j.ymeth.2024.12.013","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy. To overcome these limitations, we develop MPEMDA, a novel method that pre-completes the microbe-drug association matrix using various similarity combinations and employs a label propagation algorithm with error correction to predict microbe-drug associations. Compared with existing methods, MPEMDA simultaneously utilizes the integrated and individual similarities obtained through the Similarity Network Fusion (SNF) method to pre-complete the known drug-microbe association matrix, followed by error correction to optimize the predictive scores generated by the label propagation algorithm. Experimental results on three benchmark datasets show that MPEMDA outperforms state-of-the-art methods in both the 5-fold cross-validation and <em>de novo</em> test. Additionally, case studies on drugs and microbes highlight the method's strong potential to identify novel microbe-drug associations. The MPEMDA code is available at <span><span>https://github.com/lyx8527/MPEMDA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"235 ","pages":"Pages 1-9"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000088","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy. To overcome these limitations, we develop MPEMDA, a novel method that pre-completes the microbe-drug association matrix using various similarity combinations and employs a label propagation algorithm with error correction to predict microbe-drug associations. Compared with existing methods, MPEMDA simultaneously utilizes the integrated and individual similarities obtained through the Similarity Network Fusion (SNF) method to pre-complete the known drug-microbe association matrix, followed by error correction to optimize the predictive scores generated by the label propagation algorithm. Experimental results on three benchmark datasets show that MPEMDA outperforms state-of-the-art methods in both the 5-fold cross-validation and de novo test. Additionally, case studies on drugs and microbes highlight the method's strong potential to identify novel microbe-drug associations. The MPEMDA code is available at https://github.com/lyx8527/MPEMDA.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信